scholarly journals Ion Transport Study in Corn Starch-NaHSO3 Based Polymer Electrolytes

2021 ◽  
Vol 18 (2) ◽  
pp. 17-36
Author(s):  
Fatin Farhana Awang ◽  
◽  
Mohd Faiz Hassan ◽  
Kok Sheng Chan ◽  
Khadijah Hilmun Kamarudin ◽  
...  

In this work, different amounts of sodium bisulfite, NaHSO3 (5wt.% to 40wt.%), were dissolved in a corn starch polymer host to synthesize solid polymer electrolyte (SPE) using a solution casting technique. Then, the films prepared were characterised using non-destructive electrical impedance spectroscopy to determine SPE films' conductivity and electrical transport properties. The highest conductivity of the sample at ambient temperature was recorded at 15wt. % of NaHSO3 with a value of 2.22 × 10-4 Scm-1. Moreover, the ion transport parameters at room temperature are found to be 2.41 × 10-7 cm2s-1, 9.39 × 10-6 cm2V-1s-1, 1.70 × 1019 cm-3 for D, µ and n, respectively. The conductivity of the samples was found dependent on diffusion coefficient, D and mobility, µ of ions.

2012 ◽  
Vol 585 ◽  
pp. 185-189 ◽  
Author(s):  
Rajni Sharma ◽  
Anjan Sil ◽  
Subrata Ray

In the present work, the effect of Li salt i.e. LiClO4 contained in composite plasticizer (PC+DEC) with three different concentrations on ionic transport and other electrochemical properties of PMMA based gel polymer electrolytes synthesized has been investigated. The electrolytes have been synthesized by solution casting technique by varying the wt (%) of salt and plasticizer. The formation of polymer-salt complexes and their structural characterization have been carried out by FTIR spectroscopic and XRD analyses. The room temperature ionic conductivity of the electrolyte composition 0.6PMMA-0.125(PC+DEC)-0.15LiClO4 (wt %) has been found to be maximum whose magnitude is 0.40×10-5 S/cm as determined by ac impedance analysis. The temperature dependent ionic conductivity of electrolyte sample0.6PMMA-0.125(PC+DEC)-0.15LiClO4 has further been investigated. Thermal analyses of electrolyte samples of all three compositions have also been done.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Siti Mariah Mohd Yasin ◽  
Suriani Ibrahim ◽  
Mohd Rafie Johan

New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2nanofiller with maximum conductivity(1.38×10-4 Scm-1). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2due to the formation of localized states in the SPE and the degree of disorder in the films increased.


2013 ◽  
Vol 747 ◽  
pp. 668-672
Author(s):  
Fairus Mazlia Mat Suki ◽  
Nur Azleen Azahari ◽  
Nadras Othman ◽  
Hanafi Ismail ◽  
S. Sasidharan

Attapulgite Clay Filled Polyvinyl Alcohol/modified Corn Starch (PVOH/OCS/AT) Blend Films were Prepared by Solution Casting Technique. Biodegradability of the Blend Films were Determined by the Biodegradation in Microbial and Enzymatic Degradation. the Obtained Results Showed that the Addition of Attapulgite in Polyvinyl Alcohol/modified Corn Starch (PVOH/OCS) Blend Film has Changed the Biodegradability of the Film in both Microbial, Enzymatic Media. among all the Attapulgite-Filled Blends, PVOH/OCS/AT2 Blend Film Shows the Optimum Biodegradability Behavior because this Blend System Shows Highest DED and DMD Values.


2014 ◽  
Vol 895 ◽  
pp. 130-133 ◽  
Author(s):  
W.F. Ng ◽  
Mui Nyuk Chai ◽  
M.I.N. Isa

Novel solid polymer electrolytes containing carboxy methylcellulose (CMC) are prepared based on the vary concentration (0 - 45 wt. %) of citric acid (CA) via solution casting technique. The ion conductivity is studied by electrical impedance spectroscopy and the ionic mobility, μ and the diffusion coefficient, D is investigated by transference number measurement. The highest ionic conductivity at room temperature (303K) is 4.38 x 10-7 S cm-1 for 40 wt. % CA. The values of μ+ and D+ were higher than μ- and D- respectively, implying that the CMC-CA solid polymer electrolytes are proton conductor.


2017 ◽  
Vol 268 ◽  
pp. 347-351 ◽  
Author(s):  
Syakirah binti Shahrudin ◽  
Azizah Hanom Ahmad

Corn starch (CS) – sodium chloride (NaCl) based polymer electrolytes were prepared by solution casting technique. At room temperature, CS-NaCl film with ratio of 70 wt. % - 30 wt. % demonstrates the highest ionic conductivity in the range of (1.72 ± 0.12) x10-5 Scm-1. Temperature-dependence ionic conductivity study follows Arrhenius model and using related plot, the activation energy for highest conducting composition is 0.16eV. The transport number measurement studies confirmed that the ionic conductivity of this polymer electrolyte is due to ions. Fourier transform infrared spectroscopy (FTIR) analysis proved the interaction between CS and NaCl.


2012 ◽  
Vol 626 ◽  
pp. 454-458 ◽  
Author(s):  
M. Imperiyka ◽  
Azizan Ahmad ◽  
S.A. Hanifah ◽  
Mohd Yusri Abdul Rahman

A new solid polymer electrolytes (SPE) comprising copolymer of poly(glycidyl methacrylate, GMA) and (ethyl methacrylate, EMA) as polymer host and LiClO4as dopant was prepared by solution-casting technique. The copolymer was prepared by photopolymerization method and was characterized using NMR. The SPEs were characterized using electrochemical impedance spectroscopy (EIS), fourier transforms infrared (FTIR) and X-ray diffraction (XRD). The highest conductivity achieved was 4.0x10-4at 373K with highest conductivity at room temperature (2.7x10ˉ5 S cm-1at 30 wt. % of LiClO4). The active coordination site for the cation (Li+), three electrons donating functional carbonyl, ether and epoxy group of the GMA-co-EMA host have been evaluated base on their properties that were recorded in (FTIR). The structural analysis showed reduction in copolymer crystallinity phases at its highest conductivity


2008 ◽  
Vol 55-57 ◽  
pp. 745-748 ◽  
Author(s):  
H.M.J.C. Pitawala ◽  
M.A.K.L. Dissanayake ◽  
V.A. Seneviratne ◽  
B.E. Mellander ◽  
I. Albinsson

onic conductivity, dielectric and thermal properties of (PEO)12LiBF4 solid polymer electrolyte, dispersed with nanoporous Al2O3 have been studied. Out of seven different compositions studied, the (PEO)12LiBF4 polymer-salt complex showed the highest conductivity with σ25 oC = 8.27 × 10-6 S cm-1. Dispersion of different weight ratio of nano-porous alumina fillers to this electrolyte showed that the composite electrolyte composition with 15 wt. % Al2O3 gave the highest conductivity with σ25 oC = 6.05 × 10-5 S cm-1. The glass transition temperature, Tg decreased from -35.3 oC to -43.2 oC and the PEO crystallite melting temperature, Tm decreased from 64.5 oC to 58.8 oC due to the incorporation of 15 wt. % Al2O3 filler, suggesting that the interaction between the PEO backbone and the Al2O3 filler have affected the main chain dynamics of the host polymer. As the presence of the filler results in an increased conductivity mainly due to an increased amount of amorphous phase in the electrolyte above Tm, another mechanism, directly associated with the filler particles, appears to contribute to the observed conductivity enhancement. A possible mechanism for this could be the creation of additional hopping sites and favorable conducting pathways for migrating ionic species though Lewis acid-base type interactions between ionic species and O/OH sites on the filler grain surface. Results of the dielectric relaxation spectroscopy agree with the suggestion that the increased mobility is largely responsible for the obtained conductivity enhancement caused by the nano- porous filler.


2010 ◽  
Vol 93-94 ◽  
pp. 381-384
Author(s):  
Shahrul Amir ◽  
Mohamed Nor Sabirin ◽  
Ri Hanum Yahaya Subban

Solid polymer electrolytes comprising of various weight ratios of poly(ethyl methacrylate) (PEMA) and lithium perchlorate (LiClO4) salt were prepared via solution casting technique using N,N-Dimethylformamide (DMF) as the solvent. The conductivity values of the electrolytes were determined utilizing Solatron 1260. The highest conductivity obtained is in the order of 10-6 S cm-1. Structural properties of the electrolytes were investigated by X-ray diffraction and the results show that the highest conducting film is the most amorphous.


Poly [vinylidene fluoride] (PVdF): Ammonium ceric nitrate ((NH4)2Ce(NO3)6) based Proton conducting solid polymer electrolytes (SPEs) are prepared by solution casting technique. Polymer electrolytes are characterized by several techniques. The Structural property of the electrolytes are confirmed by XRD. The functional groups present in polymer electrolytes are confirmed by FTIR. The conductivity of the polymer electrolytes are calculated by using AC impedance analysis. The Maximum ionic conductivity is obtained for 2wt% of ammonium ceric nitrate doped polymer electrolyte.


Sign in / Sign up

Export Citation Format

Share Document