Processability, and Determination of Some Mechanical and Thermal Prosperities of Filled and Unfilled Polypropylene / Polyamide 6 Blend

2013 ◽  
Vol 6 (4) ◽  
pp. 81-99
Author(s):  
Najat J. Saleh ◽  
Jwan W. Mohammed

A new type of Bentonite filled PP/PA6 and red Kaolin filled PP/PA6  blends has been developed. It is Polypropylene and Polyamide 6 at constant ratio (80/20) and different weight fraction (0, 5, 10, and 15) % of both local Bentonite and Red Kaolin fillers were added respectively. Filled polymer blends were developed on a single screw extruder. Hardness, compression impact strength, and thermal stability of BN/PP/PA6 and RK /PP/PA6 blend system were determined at different temperatures, and different weight fraction of filler. The results shown hardness and compression increase while impact strength decrease with increase in weight fraction content. Also the results shown that thermal stability increases with increased weight fraction of filler. Bentonite filler produces better mechanical properties, than Red Kaolin fillers. Empirical equations are proposed and show a best fit with experimental data. Relevant contour diagrams, based on the proposed equations, for optimization of properties were also presented

2021 ◽  
Vol 15 (2) ◽  
pp. 271-277
Author(s):  
G. M. Nazin ◽  
B. L. Korsunskiy

2001 ◽  
Vol 08 (01n02) ◽  
pp. 19-23 ◽  
Author(s):  
F. Q. XU ◽  
E. D. LU ◽  
H. B. PAN ◽  
C. K. XIE ◽  
P. S. XU ◽  
...  

Chemically sulfur passivation of GaAs(100) by thioacetamide ( CH 3 CSNH 2) has been studied using synchrotron radiation photoemission spectroscopy (SRPES), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The measurement of SRPES and AES showed that the top layer of native oxides over GaAs(100) was removed and the sulfides of Ga and As were formed after the passivation process. The thermal stability and surface structure have also been studied by annealing the passivated samples at different temperatures. We found that the surface sulfides could be removed gradually; as a result, a clean, ordered and thus Fermi level unpinning surface was finally achieved. The surface restructures with GaAs(100)–S(2×1) and 4×1 LEED patterns were observed on annealing above 260°C and at 550°C respectively.


2021 ◽  
Vol 15 (2) ◽  
pp. 164-169
Author(s):  
Jian Gu ◽  
Sea-Hoon Lee ◽  
Daejong Kim ◽  
Hee-Soo Lee ◽  
Jun-Seop Kim

Improvement of the thermal stability of continuous SiC fiber reinforced SiC ceramic matrix composites (SiCf/SiC CMC) by the pre-treatment of SiC fillers and the suppression of oxidation during polymer impregnation and pyrolysis (PIP) process were investigated. Dense SiCf/SiC CMCs were fabricated using the slurry infiltration and PIP process under a purified argon atmosphere. Structure and mechanical properties of the SiCf/SiC CMC heated at different temperatures were evaluated. The flexural strength of the SiCf/SiC CMC decreased only 15.3%after heating at 1400 ?C, which exhibited a clear improvement compared with the literature data (49.5% loss), where severe thermal deterioration of SiCf/SiC composite occurred at high temperatures by the crystallization and decomposition of the precursor-derived ceramic matrix. The thermal stability of the SiCf/SiC CMC fabricated by PIP process was improved by the pre-treatment of SiC fillers for removing oxides and the strict atmosphere control to prevent oxidation.


1998 ◽  
pp. 236-251 ◽  
Author(s):  
A.I. Balabanovich ◽  
W. Schnabel ◽  
G.F. Levchik ◽  
S.V. Levchik ◽  
C.A. Wilkie

2019 ◽  
Vol 947 ◽  
pp. 77-81
Author(s):  
Natsuda Palawat ◽  
Phasawat Chaiwutthinan ◽  
Sarintorn Limpanart ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

The aim of this study is to improve the physical properties of poly(lactic acid) (PLA) by incorporating thermoplastic polyurethane (TPU), organo-montmorillonite (OMMT) and/or nanosilica (nSiO2). PLA was first melt mixed with five loadings of TPU (10–50 wt%) on a twin-screw extruder, followed by injection molding. The addition of TPU was found to increase the impact strength, elongation at break and thermal stability of the blends, but decrease the tensile strength and Young’s modulus. Based on a better combination of the mechanical properties, the 70/30 (w/w) PLA/TPU blend was selected for preparing both single and hybrid nanocomposites with a fix total nanofiller content of 5 parts per hundred of resin (phr), and the OMMT/nSiO2 weight ratios were 5/0, 2/3, 3/2 and 0/5 (phr/phr). The Young’s modulus and thermal stability of the nanocomposites were all higher than those of the neat 70/30 PLA/TPU blend, but at the expense of reducing the tensile strength, elongation at break and impact strength. However, all the nanocomposites exhibited higher impact strength and Young’s modulus than the neat PLA. Among the four nanocomposites, a single-filler nanocomposite containing 5 phr nSiO2 exhibited the highest impact strength and thermal stability, indicating that there was no synergistic effect of the two nanofillers on the investigated physical properties. However, the hybrid nanocomposite containing 2/3 (phr/phr) OMMT/nSiO2 possessed a compromise in the tensile properties.


2008 ◽  
Vol 584-586 ◽  
pp. 960-965 ◽  
Author(s):  
Tamara Kravchenko ◽  
Alexander Korshunov ◽  
Natalia Zhdanova ◽  
Lev Polyakov ◽  
Irina Kaganova

Annealed oxygen-free and tough-pitch copper samples have been processed by equalchannel angular pressing (ECAP) by route BC. The samples included 8 x 8 mm section pieces and a 40 mm diameter bar. Thermal stability was assessed based on the changes in the standard mechanical properties (conventional yield strength, tensile strength, elongation, proportional elongation and contraction) after annealing at different temperatures for 1 hour. Thermal stability of the same grade of material has been found to be different for different batches and to depend on the structural conditions of deformed material. The zone of thermal stability for copper of the two grades of interest does not depend on the material’s chemical composition.


2018 ◽  
Vol 184 ◽  
pp. 01016 ◽  
Author(s):  
Dana Luca Motoc ◽  
Santiago Ferrándiz Bou ◽  
Adrian Petru Pop

The contribution aims to design, deliver and debate on thermal degradation and thermal stability of several wood/PP composite materials. The wood polymer-based composites (n. WPCs) were manufactured through injection moulding by deploying various wood species under 10% and 40% weight fraction within the thermoplastic matrix. Thermal degradation of WPC specimens revealed similarities in characteristics, small discrepancies in the degradation temperatures but higher contents in the char formation, between 10% to 35% with wood content increase.


Sign in / Sign up

Export Citation Format

Share Document