scholarly journals Hot Deformation Behaviour Studies on 58Ni-39Cr Nickel Super Alloy by Thermo-Mechanical Simulation and Finite Element Method

Author(s):  
B. S. R. Venu Madhav et al., B. S. R. Venu Madhav et al., ◽  
2019 ◽  
Vol 2 ◽  
pp. 52-60 ◽  
Author(s):  
Oleg Markov ◽  
Oleksiy Gerasimenko ◽  
Leila Aliieva ◽  
Alexander Shapoval

It is shown that when modeling the processes of forging and stamping, it is necessary to take into account not only the hardening of the material, but also softening, which occurs during hot processing. Otherwise, the power parameters of the deformation processes are precisely determined, which leads to the choice of more powerful equipment. Softening accounting (processes of stress relaxation) will allow to accurately determine the stress and strain state (SSS) of the workpiece, as well as the power parameters of the processes of deformation. This will expand the technological capabilities of these processes. Existing commercial software systems for modeling hot plastic deformations based on the finite element method (FEM) do not allow this. This is due to the absence in these software products of the communication model of the component deformation rates and stresses, which would take into account stress relaxation. As a result, on the basis of the Maxwell visco-elastic model, a relationship is established between deformation rates and stresses. The developed model allows to take into account the metal softening during a pause after hot deformation. The resulting mathematical model is tested by experiment on different steels at different temperatures of deformation. The process of steels softening is determined using plastometers. It is established experimentally that the model developed by 89 ... 93 % describes the rheology of the metal during hot deformation. The relationship between the components of the deformation rates and stresses is established, which allows to obtain a direct numerical solution of plastic deformation problems without FED iterative procedures, taking into account the real properties of the metal during deformation. As a result, the number of iterations and calculations has significantly decreased.


2012 ◽  
Vol 628 ◽  
pp. 461-468
Author(s):  
D.W. Jung ◽  
D.H. Kim ◽  
B.C. Kim

The characteristics of the sheet metal process include the loss of material during the process, short processing time and excellent price and strength. The sheet metal process with the above characteristics is commonly used in the industrial field, but in order to analyze irregular field problems, a reliable and economical analysis method are needed. The finite element method is a very effective method to simulate the forming processes with a good prediction of the deformation behaviour. Among the finite element method, the static-implicit finite element method is applied effectively in order to analyze the real-size auto-body panel stamping processes, which include the forming stage.


2011 ◽  
Vol 321 ◽  
pp. 171-175 ◽  
Author(s):  
Guo Bin Zhang ◽  
Huang Yuan

Extended finite element method is widely used to simulate the discontinuity problems, e.g. fatigue crack growth. This paper mainly analyzes the fatigue crack propagation under elevated temperature in nickel-based super alloy with extended finite element method. Cohesive zone model is used to describe the mechanical behavior around the crack tip. A modified creep damage model is introduced. Fatigue damage and creep damage are accumulated in a linear relationship. And the results produced by computational code are presented and draw a comparison with experimental observation.


Sign in / Sign up

Export Citation Format

Share Document