scholarly journals Mist Irrigation Reduces Post-transplant Desiccation of Bare-root Trees

1994 ◽  
Vol 12 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Rick M. Bates ◽  
Alex X. Niemiera

Abstract Desiccation during storage and reestablishment is a major factor contributing to poor regrowth of transplanted bare-root trees. The effect of overhead mist irrigation on reducing post transplant water stress in Norway maple (Acer platanoides L. ‘Emerald Lustre’) and Yoshino cherry (Prunus x yedoensis) was examined. Bare-root Norway maple (desiccation tolerant) and Yoshino cherry (desiccation sensitive) trees were transplanted into pine bark-filled containers and subjected to mist or non-mist treatments. Stem xylem water potential, relative water content, and survivability were determined. Xylem water potential increased (became less negative) for misted maple and cherry trees. Water potential increased for non-misted maple and decreased for non-misted cherry trees. Twenty-seven percent of non-misted cherries were evaluated as nonmarketable due to stem dieback compared to 0% for misted trees. Results of this study indicate that mist irrigation effectively reduces desiccation damage for desiccation sensitive species such as cherries and hawthorns.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 569a-569
Author(s):  
Rick M. Bates ◽  
Alexander X. Niemiera

Shoot and root water potentials were determined for bare-root Norway maple (Acer platanoides L.) and washington hawthorn (Crataegus phaenopyrum Med.) seedlings subjected to shoot and root exposure treatments for six cold storage durations. Shoot and root water potentials for all exposure treatments and both species decreased with increased time in storage, and the greatest degree of water stress occurred during the first six weeks of storage. Maple shoot and root water potentials for the exposed shoot treatment were the same as the whole plant covered treatment. In contrast, hawthorn shoot and root water potentials for the exposed shoot treatment were the same as values for the roots exposed treatment. Based on these data, we conclude that desiccation sensitive species such as washington hawthorn require root and shoot protection to minimize water loss.


2007 ◽  
Vol 47 (12) ◽  
pp. 1484 ◽  
Author(s):  
B. Ben Rouina ◽  
A. Trigui ◽  
R. d'Andria ◽  
M. Boukhris ◽  
M. Chaïeb

In Tunisia, olives are grown under severe rain-fed, arid conditions. To determine the behaviour of olive trees (cv. Chemlali Sfax) during the severe drought affecting Tunisian arid areas in 2002, a range of physiological parameters were investigated in three adjacent orchards. Two olive orchards were rain-fed, one located on a sandy soil, and the other on a sandy-loam clay soil. A third orchard was also located on sandy soil, but received remedial irrigation (415 mm of water per year; ~40% of olive evapotranspiration). Predawn leaf water potential (Ψpd) did not fall below –1.52 MPa for irrigated olive trees. However, a large decrease in Ψpd was observed for rain-fed olive trees in the same period with Ψpd measured at about –3.2 MPa on sandy soil and –3.6 MPa on sandy-loam clay soil. At the same time, the minimal leaf water potential recorded at midday (Ψmin) decreased to –4.15 MPa and –4.71 MPa in the rain-fed trees for sandy and sandy-loam clay soil, respectively. For irrigated trees, the Ψmin was –1.95 MPa. These results were associated with relative water content, which varied from 80% for irrigated trees to 54 and 43.6%, respectively, for rain-fed trees and trees subjected to severe drought. In August, when the relative water content values were less than 50%, a progressive desiccation in the outer layer of canopy and death of terminal shoots were observed in trees, which grew on the sandy-loam clay soil. Furthermore, low soil water availability also affected (negatively) the net photosynthetic rate in rain-fed orchards (10.3 µmol/m2.s for irrigated trees v. 5.3 µmol/m2.s in rain-fed trees on sandy soil) and stomatal conductance (98.5 mmol/m2.s v. 69.3 mmol/m2.s). However, it improved water use efficiency (7.6 v. 4.7 µmol CO2/mmol H2O), which increased by more than 50% in both groups of rain-fed trees compared with the irrigated ones. We can conclude that olive trees respond to drought by showing significant changes in their physiological and biological mechanisms. These results also help our understanding of how olive trees cope with water stress in the field and how marginal soils can restrict growth and lower yields.


2001 ◽  
Vol 13 (1) ◽  
pp. 75-87 ◽  
Author(s):  
REJANE J. MANSUR C. NOGUEIRA ◽  
JOSÉ ANTÔNIO P. V. DE MORAES ◽  
HÉLIO ALMEIDA BURITY ◽  
EGÍDIO BEZERRA NETO

Young sexually and assexually propagated Barbados cherry plants were submitted to water deficit (20 days without irrigation). During this period the accumulation of proline, water potential of branches, osmotic potential, the relative water content of leaves, the leaf diffusive resistance, the transpiration rate and leaf temperature in the cuvette were determined. In addition, photosynthetically active radiation (PAR) and vapor pressure deficit (VPD) were measured in the porometer cuvette. The concentration of proline for both types of plants began to increase on the fifth day without watering, and reached 38.1 times the concentration in the control plants grown from seeds and 26.4 times the concentration in grafted plants on the tenth day without watering. The lowest levels of leaf water potential in the plants suffering from severe water stress varied from -4.5 to -5.7 MPa, the lowest values being observed in the sexually propagated plants. These plants also showed the highest values for transpiration (0.9 mmol.m-2.s-1) and proline concentration (20.42 mg.g-1 DM), the lowest for relative water content of the leaves (38.4%) and diffusive resistance (940 s.m-1) at the end of the experiment. The Barbados cherry plants developed strategies for surviving drought, with differences between various characteristics, resulting from prolonged stress, which significantly influenced the parameters evaluated, with the exception of leaf temperature.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 601c-601
Author(s):  
Chuhe Chen ◽  
J. Scott Cameron ◽  
Stephen F. Klauer

Leaf water potential (LWP), relative water content (RWC), gas exchange characteristics, and specific leaf weight (SLW) were measured six hours before, during, and after water stress treatment in F. chiloensis and F. ×ananassa grown in growth chambers. The leaves of both species showed significantly lower LWP and RWC as water stress developed. F. ×ananassa had consistency lower LWP under stressed and nonstressed conditions than F. chiloensis. F. ×ananassa had higher RWC under nonstressed conditions, and its RWC decreased more rapidly under water stress than F. chiloensis. In comparison to F. ×ananassa, F. chiloensis had significantly higher CO2 assimilation rate (A), leaf conductance (LC), and SLW, but not transpiration rate (Tr), under stressed and nonstressed conditions. LC was the most sensitive gas exchange characteristic to water stress and decreased first. Later, A and stomatal conductance were reduced under more severe water stress. A very high level of Tr was detected in F. ×ananassa under the most severe water stress and did not regain after stress recovery, suggesting a permanent damage to leaf. The Tr of F. chiloensis was affected less by water stress. Severe water stress resulted in higher SLW of both species.


Irriga ◽  
1998 ◽  
Vol 3 (3) ◽  
pp. 81-88
Author(s):  
Carlos Augusto Lima Porto ◽  
Antonio Evaldo Klar ◽  
José Vicente Vasconcelos

EFEITOS DO DÉFICIT HÍDRICO EM PARÂMETROS FISIOLÓGICOS DE FOLHAS DE SORGO (Sorghum bicolor, L.)  Carlos Augusto Lima PortoAntonio Evaldo Klar(2)José Vicente VasconcelosDepartamento de Engenharia Rural – Faculdade de Ciências Agronômicas – UNESPFone: (014) 821-3883  Fax: (014) 821-343818603-97’ – Botucatu - SP  1 RESUMO O experimento foi conduzido em casa de vegetação no Departamento de Engenharia Rural da Faculdade de Ciências Agronômicas - UNESP/Botucatu, SP, com delineamento experimental inteiramente casualizado, com 12 repetições. A cultura do sorgo (Sorghum bicolor, L.) foi plantada em vasos que continham 8,0 kg de solo (base em peso de solo seco), pertencente ao grande grupo Terra Roxa Estruturada para os dois tratamentos: a) plantas submetidas a défices  hídricos, sendo irrigadas quando o potencial de água no solo chegava a -1,5 MPa, elevando-o às imediações de -0,01 MPa), e b) plantas irrigadas constantemente por capilaridade. Todas as plantas foram irrigadas aos 55 dias após a emergência e os parâmetros avaliados foram: condutância estomática, potencial de água e teor relativo de água nas folhas mais novas totalmente expandidas, com determinações diárias entre as onze e treze horas, até que o potencial de água no solo atingisse valores em torno de -1,5 MPa. Da análise geral dos dados obtidos, pode-se inferir que a variação no status de água na folha observado através do potencial e do teor relativo de água nas folhas pode ser utilizado para indicar o momento de irrigar; ainda estas medições podem ser indicativas das plantas ou cultivares de sorgo que se mostram mais tolerantes à seca e que o mecanismo de adaptação é o  “avoidance”. UNITERMOS: Condutividade estomática, potencial de água na folha, teor relativo de água na folha,  tolerância à seca.  PORTO, C. A . L.., KLAR, A. E. , VASCONCELLOS, V. J.  Water deficit on physiological parameters of soybean  leaves (Sorghum bicolor L).  2 ABSTRACT A study was carried out at Agricultural Engineering Department, UNESP, Botucatu - SP, with a sorghum crop (Sorghum bicolor, L.) in order to physiologically evaluate the crop response to drought. A completely random design with twelve replications were used. Pots with 8 kg of a medium texture soil (dry weight basis) were used in order to test the influence of the two treatments: a) plants being submitted to a water stress, where irrigation were done when the water potential in the soil (s) were -1,5 MPa, raising it to about -0,01 MPa, and b) plants being always irrigated by capillary. The parameters evaluated were water vapor stomata conductivity, water potential  and relative water content in the leaves.  All plants were irrigated at 55 days after emergency, with daily determinations from eleven AM to thirteen PM, until soil water potential reaches around -1,5MPa. From the general data analysis, it can be inferred that there was a significant variation in the water status in the leaves by determinations of water potential and relative water content in the leaves, indicating that the method may be used to indicate the moment of irrigation and the plants and cultivars more tolerant to drought.  Sorghum plants showed adaptation to water stress under avoidance mechanism. KEYWORDS: Stomata conductivity, water potential in the leaves, relative water content, drought tolerance.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 490A-490
Author(s):  
S.M. Lutfor Rahman ◽  
Eiji Nawata ◽  
Tetsuo Sakuratani

Effects of water stress at different plant ages on SOD activities were studied in two tomato cultivars. Water stress treatment decreased the leaf water potential in all stages, but reduction of leaf water potential was more rapid and pronounced in KF than TM at all DSLs (days of seedlings). After withdrawal of water stress treatment, stressed plants of TM increased leaf water potential to the values of control level in all DSLs, but in KF, leaf water potential of stressed plants were much lower than that of control plants. Effects of water stress on relative water content (RWC) of leaves at 20 DSL showed a similar tendency to that on leaf water potential. The SOD activities in both cultivars showed significant increase by water stress treatment at all DSLs, but the increase of SOD by water stress was larger in TM than in KF. This tendency was observed at all DSLs. The results may indicate that SOD activities play an important role in drought tolerance of tomato at various plant ages and suggest a possible use of SOD activities as a criterion for tomato drought tolerance.


2014 ◽  
Vol 6 (2) ◽  
pp. 207-213
Author(s):  
Azam POURMOHAMMAD ◽  
Mahmoud TOORCHI ◽  
Seyed S. ALAVIKIA ◽  
Mohammad R SHAKIBA

Implementing appropriate breeding strategies for sunflower, alongside dependable information on heritability and gene effects upon yield and related traits under drought conditions, are all necessary. Thirty sunflower hybrids were produced by line × tester cross of six male-sterile and five restorer lines. Their hybrids were evaluated in three levels of irrigation, as follows: (1) non-stressed plots, irrigated at regular intervals (W1); (2) mild water stress (W2), irrigated from the beginning of the button stage (R4) to seed filling initiation (R6); (3) severe water stress (W3) started from the beginning of button stage (R4) to physiological maturity. Based on observations and specific methods for determination, canopy temperatures, chlorophyll index, relative water content and proline content, were studied by additive effects, under the different irrigation conditions. Canopy temperatures,chlorophyll index, relative water content, leaf water potential, proline content and yield were controlled by additive effects under mild stressed conditions. Under severe stress conditions however, canopy temperatures, leaf water potential and proline content were controlled by additive effects, while chlorophyll index and relative water content were controlled by both additive and dominant effects, as seed yield was mainly influenced by the dominant effects. The narrow sense heritability ranged from 47-97% for all traits, except for chlorophyll fluorescence. Yield correlated positively with chlorophyll index and relative water content, and negatively with canopy temperature and leaf water potential. Therefore, under drought stressed conditions in breeding programs, canopy temperatures, chlorophyll index and relative water content can be reliable criteria for the selection of tolerant genotypes with prospect to higher yields.


Irriga ◽  
2008 ◽  
Vol 13 (4) ◽  
pp. 438-448 ◽  
Author(s):  
Alexandre Barreto Almeida dos Santos ◽  
Antonio Evaldo Klar ◽  
Cleber Júnior Jadoski

PARÂMETROS FISIOLÓGICOS DE CULTIVARES DE CEVADA SOB DÉFICITS HÍDRICOS  Alexandre Barreto Almeida dos Santos; Antonio Evaldo Klar; Cleber Junior JadoskiDepartamento de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, SP, [email protected]   1 RESUMO O objetivo deste trabalho foi estudar parâmetros fisiológicos em seis cultivares de cevada (Borema, Lagoa, BRS – 180, BRS – 195, BRS – 225 e EMB – 128), por meio da imposição de ciclos de seca em diferentes estágios fenológicos da cultura. Os tratamentos utilizados foram: T1 - vasos irrigados constantemente até o final do ciclo da cultura; T2 - ciclo de seca iniciado aos 45 dias após a semeadura (DAS) e T3 - ciclo de seca iniciado aos 65 DAS. Avaliaram-se a resistência difusiva ao vapor de água (Rs), teor relativo de água (TRA) e potencial de água na folha (Ψf). Utilizou-se o delineamento em blocos casualizados: quatro blocos, seis cultivares de cevada e três tratamentos, totalizando setenta e duas unidades experimentais. O experimento foi conduzido durante os meses de agosto a novembro de 2005, em estufa plástica localizada na área experimental do Departamento de Engenharia Rural - Faculdade de Ciências Agronômicas de Botucatu – UNESP. Os dados analisados permitiram concluir que todas as cultivares de cevada apresentaram adaptação ao déficit hídrico, porém a cultivar EMB – 128 foi a que apresentou maior tendência à tolerância à seca e a BRS180 amenor.  Os resultados mostraram que apenas um ciclo de seca  pode aumentar a tolerância à seca. UNITERMOS: resistência difusiva ao vapor de água, teor relativo de água e potencial de água na folha.   SANTOS, A. B. A.; KLAR, A. E.; JADOSKI, C. J. PHYSIOLOGICAL PARAMETERS IN  BARLEY  CULTIVARS UNDER  WATER  STRESS  2 ABSTRACT                   The objective of this study was to evaluate some physiological parameters in six barley cultivars (Borema, Lagoa, BRS-180, BRS-195, EMB-128 e BRS-225), under water stress in different crop phenological phases. The treatments were as follows: T1 - pots constantly irrigated until harvest; T2: - water stress starting from 45 days after sowing (DAS) and T3 -  water stress  starting from 65 DAS. Leaf resistance to water vapor diffusion (Rs), relative water content (RWC), and leaf water potential (Ψl) were used to evaluate drought tolerance.  Pots were arranged in a randomized block design with four blocks, six barley cultivars, and three treatments, in a total of seventy two pots. The experiment was conducted from August to November2005 ina polyethylene greenhouse located at the experimental area of Rural Engineering Department – FCA,  UNESP – Botucatu - SP.  The results showed that all barley cultivars presented some adaptation to water stress, but EMB-128 was the most likely and BRS-180 the least likely to be drought tolerant. The results revealed that only one drought cycle may increase tolerance to drought. KEY WORDS: Leaf resistance to water vapor diffusion, relative water content, and leaf water potential.


2014 ◽  
Vol 139 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Jingjing Yin ◽  
Nina L. Bassuk ◽  
Madeline W. Olberg ◽  
Taryn L. Bauerle

In our study, we investigated whether root hydraulic conductance is related to post-transplant recovery. We used two Quercus species that differ in their transplant ability, Q. bicolor and Q. macrocarpa. Q. bicolor easily survives transplanting, whereas Q. macrocarpa often does not. We compared root hydraulic conductance after transplanting between control (without root pruning) and root-pruned, 1-year-old, small-caliper trees. We also examined the effects of transplant timing on post-transplant recovery of large-caliper trees. Hydraulic conductance in fine roots was correlated with recovery of the two Quercus species after transplanting. Six months after transplanting, small-caliper Q. bicolor trees had similar specific hydraulic conductance (KS) in fine roots compared with the KS before root-pruning, whereas fine root KS in small-caliper Q. macrocarpa trees decreased. Lower pre-dawn and midday xylem water potential in root-pruned Q. macrocarpa 6 weeks after transplanting indicates that root-pruned Q. macrocarpa experienced transplanting-induced water stress. For large-caliper trees, all Q. macrocarpa trees exhibited typical symptoms of transplant shock regardless of transplant timing, which was the result of higher vulnerability to mild water stress compared with Q. bicolor, resulting in a large reduction in fine root KS. Fine root KS in spring-transplanted Q. bicolor trees was much higher than that in fall-transplanted trees, implying spring transplanting is optimal for Q. bicolor. Other intrinsic characteristics of the species should be considered in the future when making better decisions on transplant timing such as xylem anatomy, carbon storage, rhizosphere conditions, and plant growth.


1990 ◽  
Vol 8 (1) ◽  
pp. 22-25
Author(s):  
Paul Murakami ◽  
Tony H.H. Chen ◽  
Leslie H. Fuchigami

Abstract Nurserymen consider Washington hawthorn (Crategus phaenopyrum Med.) sensitive and Norway maple (Acer platanoides L.) tolerant to postharvest practices. The desiccation tolerance, cold hardiness and water potential at various growth stages were monitored on field-grown Washington hawthorn and Norway maple. There were no differences between these two species in the rate of water loss in the root, shoot or whole plants. Hawthorn, however, was more sensitive to desiccation stress than maple throughout all growth stages. The roots lost water at a faster rate than the stems in both species. Hawthorn plants acquired rest and cold hardened later in the fall and attained less dormancy and less freezing tolerance than did maple.


Sign in / Sign up

Export Citation Format

Share Document