scholarly journals Compost and Rubber Tire Chips as Peat Substitutes in Nursery Container Media: Effects on Chemical and Physical Media Properties

1996 ◽  
Vol 14 (3) ◽  
pp. 122-129
Author(s):  
Beth R. Jarvis ◽  
James B. Calkins ◽  
Bert T. Swanson

Abstract Physocarpus opulifolius ‘Dart's Gold’, Forsythia x ‘Meadowlark’, Spiraea x billiardii, Juniperus chinensis ‘Seagreen’, J. sabina ‘Mini Arcade’, J. horizontalis ‘Hughes’, and Lamiastrum galeobdolon were grown in container media amended with three yard waste (YW) composts, one municipal solid waste (MSW) compost and shredded rubber tire chips. Each of the five amendments was used to replace 50% or 100% of the sphagnum peat in a standard container medium resulting in eleven media treatments. Effects of peat replacement with compost or tire chips were compared relative to chemical and physical media characteristics. Amendments evaluated had limited long term nutritional value. Initial pH was increased when peat was replaced with compost or rubber tire chips; the increase in pH was proportional to the amount of peat replaced (50 or 100%). Over time, pH of all media equilibrated with irrigation water pH. Soluble salts were reduced for media amended with rubber tire chips while peat replacement with compost had variable effects on soluble salt levels based on compost source. Media amended with compost exhibited increased bulk density and decreased porosity, water infiltration capacity and water holding capacity compared to the standard, peat-based control medium. Peat replacement with rubber tire chips increased bulk density and porosity and decreased water holding capacity compared to the standard control medium. Water infiltration capacity was greatly increased and water holding capacity decreased when peat was replaced 100% with rubber tire chips.

Author(s):  
Kelsey Watts

Soils play a critical role to society as a medium that facilitates crop production and also contributes to the energy and carbon balance of the Earth System. Land-use change and improper land-use is one of the dominant factors affecting soil erosion and nutrient loss in soils. We examined the effects of land-use change on an Elmbrook clay/clay-loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: a sod field (established for over 10 years), a wheat field (part of a wheat/corn/soybean rotation for 30 years) and an undisturbed deciduous forest. Under each land-use type, cores to a depth of 40 cm were collected along three random 30 m transects (at 8, 16 and 24 m), then divided them into 10 cm increments, combining all similar depth increments along one transect. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density of the soil was much higher (1.55 vs. 0.95 g/cm3) in both agricultural ecosystems compared to the forest, but only in the 0-10 cm layer. Soil moisture at 60% water holding capacity was much greater for the forest than the sod and wheat soils. Soil pH was slightly lower in the forest compared to the sod and wheat fields. The sod and wheat fields showed losses of ~52% and ~53% organic matter, respectively, in contrast to the forested area. The greatest differences in organic matter and total carbon were found in the top 10 cm, likely due to the greater accumulation of litter at the ground surface in the forest compared to the agricultural sites. It appears that long-term (10 year) agricultural production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter, bulk density and water holding capacity. These findings are consistent with much of the literature concerning the effects of land-use change on soil quality, and highlight the need to develop improved management systems to minimize losses in soil quality that can lead to declines in the productivity potential of soils over time.


2015 ◽  
Vol 1 (2) ◽  
pp. 67
Author(s):  
Haq Nawaz ◽  
Muhammad Aslam Shad ◽  
Rabia Mehmood ◽  
Tanzila Rehman ◽  
Hira Munir

<p>Functional properties such as protein solubility, swelling capacity, water holding capacity, gelling ability, bulk density and foaming capacity of flours of some commonly used cereals and legume (wheat, refined wheat, maize and chickpea) and their blends were studied. Blends of flours were prepared by mixing equal proportions of selected floors. Statistically significant difference  in studied functional properties except bulk density was observed among cereal flours and their blends. Chickpea flour was found to possess comparatively high water holding capacity, protein solubility index and swelling capacity. The functional properties of maize and wheat flours were found to be improved when blended with chickpea. Chickpea flour and its blends with cereal flours were found to possess good functional score and suggested as favorable candidates for use in the preparation of viscous foods and bakery products. The data provide guidelines regarding the improvement in functional properties of economically favorable cereal flours.<strong></strong></p>


Geoderma ◽  
2019 ◽  
Vol 347 ◽  
pp. 194-202 ◽  
Author(s):  
Frank G.A. Verheijen ◽  
Anna Zhuravel ◽  
Flávio C. Silva ◽  
António Amaro ◽  
Meni Ben-Hur ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Pallabi Das ◽  
Chaitali Roy Chowdhuri ◽  
Soma Barman

Silver nanoparticles (AgNP) synthesized from It influenced the inherent soil properties like bulk density (BD), water holding capacity (WHC), available N, P, K, urease, phosphatase activity and TOC. The apparent increment WHC, N, P, K, urease, and phosphatase in soil were observed whereas reduction of BD was noticed. Due to application of nanosolutions the pH of the soil shifted towards neutrality from 0 to 60 days. Moreover, they also did not have any toxicity upon plant as well as earthworm ecosystem.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 686b-686 ◽  
Author(s):  
Thomas M. Contrisciano ◽  
E. Jay Holcomb

The objective of this research was to develop a mineral wool based growing medium for the horticultural industry. Two types of hydrophilic mineral wool, clean wool (CW) and unclean wool (UC) were used unamended, as well as both types in combinations with 25, 50, and 75 percent peat moss (PM). A control of 100 percent (PM) was also used. Unamended CW had a low bulk density, excellent water holding capacity, good aeration, but high pH. Once PM was added to CW, bulk density still remained low, water holding capacity and aeration remained good, and the pH dropped to a more suitable level. Unamended UW had a high bulk density, good water holding capacity, poor aeration, and high pH. Once PM was added to UW, bulk density decreased, water holding capacity remained good, aeration increased, and pH decreased to a more optimal level. Impatiens `Violet' and Begonia `Whiskey' were grown in the nine treatments for six and nine weeks respectively. At harvest, plant growth was evaluated by height, diameter, fresh weight, dry weight, and tissue analysis. Plant growth response showed plants grown in unamended CW, UW, and PM were smaller in size and lighter in fresh and dry weights than those in 50 percent wool/50 percent PM. The plants grown in 25 and 75 percent PM were similar to the 50 percent wool/50 percent PM in size and weight.


HortScience ◽  
2002 ◽  
Vol 37 (7) ◽  
pp. 1035-1039 ◽  
Author(s):  
Pablo R. Hidalgo ◽  
Richard L. Harkess

Earthworm castings (vermicompost) were evaluated as a substrate amendment for chrysanthemum [Dendranthema ×grandiflora (Ramat.) Kitam.] `Miramar' production. Vermicompost produced from sheep, cattle, and horse manures were mixed at different ratios with 70 peatmoss: 30 perlite (v/v) to create 12 substrates. The 70 peatmoss: 30 perlite mix at 100% and Sunshine® Mix 1 were used as control substrates. The bulk density, percentage of pore space, and water holding capacity increased as vermicompost content increased while the percentage of air space decreased. At 100% vermicompost, water holding capacity and bulk density were greatest in vermicompost from sheep manure. Plants grown in mixtures of 50% vermicompost from sheep had a greater growth index at harvest, foliar area, number of flowers per pot, and dry weight and fewer days for flower development than plants grown in other substrates. Vermicompost from sheep manure added at 50% by volume was most effective as a substrate amendment for chrysanthemum production.


1986 ◽  
Vol 107 (3) ◽  
pp. 555-559
Author(s):  
P. M. Nimje ◽  
Jagdish Seth

SUMMARYThe effects of applying phosphorus, farmyard manure (FYM) and nitrogen on some soil properties were studied at the end of 2 years of field experimentation at New Delhi, India. Each year a crop of soya bean sown in the rainy season received phosphorus and farmyard manure and maize sown in winter received nitrogen fertilizer. Phosphorus was applied to soya bean at 0, 40 and 80 kg P2O5/ha, farmyard manure at 0 and 15 t/ha and nitrogen to maize at 0, 60 and 120 kg N/ha. Phosphorus application increased organic C, total N and available P status of the soil. It also improved bulk density and water-holding capacity of the soil. Farmyard manure increased organic C, total N, available P and K and pH of the soil, but decreased EC and bulk density of the soil. Water-holding capacity of the soil was increased by FYM. N fertilizer increased organic C and total N only.


2019 ◽  
pp. 115-129
Author(s):  
Jorge Cabelin ◽  
Beatriz Jadina

Landslides have become very frequent in Leyte which justifies the need for soil assessment and characterization of the landslide-prone areas in the province. This study assessed the physical characteristics of soils from the landslide areas in Cadac-an watershed in Leyte, Philippines. Landslide cuts located in the central highlands of Cadac-an watershed were used as representative profiles in this study. These were examined, characterized and sampled for the analyses of soil physical properties which include particle size distribution (Pipette method), bulk density (Paraffin-clod method), particle density (Pycnometer method), porosity, total soil wet density, water holding capacity and field capacity (Gravimetric method), saturated hydraulic conductivity (Constant head method), liquid limit and plastic index. Generally, soils from the landslide areas in Cadac-an watershed had a sandy loam to clay loam to clayey texture, low bulk density, low particle density, high porosity, moderate total soil wet density, moderate to high water holding capacity, low to moderate field capacity, moderately high to high saturated hydraulic conductivity, moderate liquid limit and low plastic index. Based on the above characteristics, the soils are susceptible to landslide occurrence thus it is highly recommended to conduct constant assessment and monitoring the area.


Sign in / Sign up

Export Citation Format

Share Document