scholarly journals Modified New Iterative Method for Solving Nonlinear Partial Differential Equations

2020 ◽  
Vol 19 ◽  
pp. 1-10
Author(s):  
Alaa K. Jabber

In this paper, the iterative method, proposed by Gejji and Jafari in 2006, has been modified for solving nonlinear initial value problems. The Laplace transform was used in this modification to eliminate the linear differential operator in the differential equation. The convergence of the solution was discussed according to the modification proposed. To illustrate this modification some examples were presented.

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1451
Author(s):  
Liviu Cădariu ◽  
Dorian Popa ◽  
Ioan Raşa

In this paper, we obtain a result on Ulam stability for a second order differential operator acting on a Banach space. The result is connected to the existence of a global solution for a Riccati differential equation and some appropriate conditions on the coefficients of the operator.


1980 ◽  
Vol 3 (1) ◽  
pp. 113-149 ◽  
Author(s):  
J. Vom Scheidt ◽  
W. Purkert

In this paper linear differential equations with random processes as coefficients and as inhomogeneous term are regarded. Limit theorems are proved for the solutions of these equations if the random processes are weakly correlated processes.Limit theorems are proved for the eigenvalues and the eigenfunctions of eigenvalue problems and for the solutions of boundary value problems and initial value problems.


2020 ◽  
Vol 18 ◽  
pp. 118-128
Author(s):  
Alaa Almosawi ◽  
Luma N. M. Tawfiq

In this paper, a new approach for solving partial differential equations was introduced. The collocation method based on LA-transform and proposed the solution as a power series that conforming Taylor series. The method attacks the problem in a direct way and in a straightforward fashion without using linearization, or any other restrictive assumption that may change the behavior of the equation under discussion. Five illustrated examples are introduced to clarifying the accuracy, ease implementation and efficiency of suggested method. The LA-transform was used to eliminate the linear differential operator in the differential equation.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 155
Author(s):  
Gbenga O. Ojo ◽  
Nazim I. Mahmudov

In this paper, a new approximate analytical method is proposed for solving the fractional biological population model, the fractional derivative is described in the Caputo sense. This method is based upon the Aboodh transform method and the new iterative method, the Aboodh transform is a modification of the Laplace transform. Illustrative cases are considered and the comparison between exact solutions and numerical solutions are considered for different values of alpha. Furthermore, the surface plots are provided in order to understand the effect of the fractional order. The advantage of this method is that it is efficient, precise, and easy to implement with less computational effort.


2020 ◽  
Vol 4 (1) ◽  
pp. 448-455
Author(s):  
Mulugeta Andualem ◽  
◽  
Atinafu Asfaw ◽  

Nonlinear initial value problems are somewhat difficult to solve analytically as well as numerically related to linear initial value problems as their variety of natures. Because of this, so many scientists still searching for new methods to solve such nonlinear initial value problems. However there are many methods to solve it. In this article we have discussed about the approximate solution of nonlinear first order ordinary differential equation using ZZ decomposition method. This method is a combination of the natural transform method and Adomian decomposition method.


Author(s):  
Abeer Aldabagh

In this paper, a new iterative method was applied to the Zakharov-Kuznetsov system to obtain the approximate solution and the results were close to the exact solution, A new technique has been proposed to reach the lowest possible error, and the closest accurate solution to the numerical method is to link the numerical method with the pso algorithm which is denoted by the symbol (NIM-PSO). The results of the proposed Technique showed that they are highly efficient and very close to the exact solution, and they are also of excellent effectiveness for treating partial differential equation systems.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 56 ◽  
Author(s):  
Galina Kurina

Under some conditions, an asymptotic solution containing boundary functions was constructed in a paper by Vasil’eva and Butuzov (Differ. Uravn. 1970, 6(4), 650–664 (in Russian); English transl.: Differential Equations 1971, 6, 499–510) for an initial value problem for weakly non-linear differential equations with a small parameter standing before the derivative, in the case of a singular matrix A ( t ) standing in front of the unknown function. In the present paper, the orthogonal projectors onto k e r A ( t ) and k e r A ( t ) ′ (the prime denotes the transposition) are used for asymptotics construction. This approach essentially simplifies understanding of the algorithm of asymptotics construction.


1988 ◽  
Vol 31 (1) ◽  
pp. 79-84
Author(s):  
P. W. Eloe ◽  
P. L. Saintignon

AbstractLet I = [a, b] ⊆ R and let L be an nth order linear differential operator defined on Cn(I). Let 2 ≦ k ≦ n and let a ≦ x1 < x2 < … < xn = b. A method of forced mono tonicity is used to construct monotone sequences that converge to solutions of the conjugate type boundary value problem (BVP) Ly = f(x, y),y(i-1) = rij where 1 ≦i ≦ mj, 1 ≦ j ≦ k, mj = n, and f : I X R → R is continuous. A comparison theorem is employed and the method requires that the Green's function of an associated BVP satisfies certain sign conditions.


Sign in / Sign up

Export Citation Format

Share Document