Structural and Optical Properties of Thermally Evaporated BiSb2S3 Thin Films

2013 ◽  
Vol 678 ◽  
pp. 123-130 ◽  
Author(s):  
K. Kandaswamy ◽  
Panneerselvam Chirstopher Selvin ◽  
B. Nalini ◽  
I. Mohamed Abdulla ◽  
K.P. Abhilash

Thin films of Bi1.5(Sb2S3)0.5of different thickness were deposited on glass substrate by vacuum thermal evaporation method and annealed at different temperature. The elemental compositions of the films were confirmed by energy dispersive X-ray analysis (EDAX). The prepared films were structurally and morphologically characterized by X-ray diffraction (XRD) and microscopic (SEM & AFM) techniques respectively. It has been confirmed that the films possess polycrystalline nature with orthorhombic phase and the grain size of the films vary from 27.92 to 81.37 nm. The observed bandgap energies (varying from 1.787eV to 1.963 eV) of the films and its temperature dependence were estimated from optical absorption measurements.

2019 ◽  
Vol 17 (41) ◽  
pp. 15-28
Author(s):  
Hussain. M. Selman

BixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measurements for the thin films of BixSb2-xTe3, show that the grain size and the average surface roughness decreases with increasing of the percentage Bi for different thickness.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


2021 ◽  
Vol 1039 ◽  
pp. 398-405
Author(s):  
Munira M.J. Al-Haji ◽  
Raad M.S. Al-Haddad

Bulk Germanium monosulphide (GeS) alloy was synthesized using the usual melt-quenching technique. Its grains were used as the source material to deposit thin films by vacuum thermal evaporation. Thin-films samples were doped with 1, 2, and 3 at.% indium by thermal co-evaporation and annealed in a vacuum at temperatures 373, 473 and 550 K for an hour. Compositional, structural, and morphological properties of the bulk GeS alloy and its thin films were investigated by Energy Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques. The analyses verified the stoichiometry (GeS) of the starting material in the prepared thin films. They also revealed that the thin films under study are amorphous, homogeneous, without any cracks deposited uniformly on the glass substrate with thickness 650 to 700 nm.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Swati Arora ◽  
Vivek Jaimini ◽  
Subodh Srivastava ◽  
Y. K. Vijay

Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te) and bismuth (Bi) were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to show granular growth.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744054 ◽  
Author(s):  
Zhangpeng Shao ◽  
Chengwu Shi ◽  
Junjun Chen ◽  
Yanru Zhang

SnS thin films with gear-like sheet appearance were successfully prepared by close-spaced vacuum thermal evaporation using SnS powders as a source. The influence of substrate temperature on the surface morphology, chemical composition, crystal structure and optical property of SnS thin films was investigated by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and ultraviolet–visible–near infrared spectroscopy. The results revealed that serration architecture appeared obviously in the edge of the SnS sheet and the strongest peak at 2[Formula: see text]=31.63[Formula: see text] was broadened and many shoulder peaks were observed with increasing substrate temperature. The atomic ratio of Sn to S increased from 1:1.08 to 1:1.20, the grain size became slightly smaller and the optical absorption edge had a blueshift in the SnS thin film with decreasing substrate temperature.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Peijie Lin ◽  
Sile Lin ◽  
Shuying Cheng ◽  
Jing Ma ◽  
Yunfeng Lai ◽  
...  

Ag-doped In2S3(In2S3:Ag) thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD), spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3and AgIn5S8phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103to5.478×10-2 Ω·cm.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Wei Chen

Thermoelectric (TE) materials are crucial because they can be used in power generation and cooling devices. Sb2Te3-based compounds are the most favorable TE materials because of their excellent figure of merit at room temperature. In this study, Sb2Te3thin films were prepared on SiO2/Si substrates through thermal evaporation. The influence of the evaporation current on the microstructures and TE properties of Sb2Te3thin films were investigated. The crystalline structures and morphologies of the thin films were analyzed using X-ray diffraction and field emission scanning electron microscopy. The Seebeck coefficient, electrical conductivity, and power factor (PF) were measured at room temperature. The experimental results showed that the Seebeck coefficient increased and conductivity decreased with increasing evaporation current. The Seebeck coefficient reached a maximum of 387.58 μV/K at an evaporation current of 80 A. Conversely, a PF of 3.57 µW/cmK2was obtained at room temperature with evaporation current of 60 A.


Sign in / Sign up

Export Citation Format

Share Document