scholarly journals Microstructural evolution of a modified HP alloy: experimental and complementary computational study

2017 ◽  
pp. 5141-5145
Author(s):  
Sandra Simonetti ◽  
C. Lanz ◽  
G. Brizuela ◽  
A. Juan

In this work is presented results of the microstructural characterization of austenitic stainless steel (HP series) modified with Nb, aged at temperatures of 750, 800, 850, 900 and 950oC in air at different times. Microstructural changes were analyzed using optical microscopy, scanning electron microscopy (SEM) equipped with (EDS), x-ray diffraction and Vickers hardness. In the as-cast condition, the microstructure consists of an austenitic matrix and eutectic carbides network, Cr, Nb-rich carbides. The Cr-rich carbides are M7C3 type, whereas, those rich in Nb are NbC. During aging, there is a second precipitation in the matrix of very fine needle form of M23C6 carbides, which leads to an increase in hardness. After that, the decreasing in hardness is associated with a coalescence phenomenon of the secondary precipitates. Computational modeling shows that M23C6 is lesser stable than M7C3 carbide.

2014 ◽  
Vol 805 ◽  
pp. 343-349
Author(s):  
Carine F. Machado ◽  
Weber G. Moravia

This work evaluated the influence of additions of the ceramic shell residue (CSR), from the industries of Lost Wax Casting, in the modulus of elasticity and porosity of concrete. The CSR was ground and underwent a physical, chemical, and microstructural characterization. It was also analyzed, the environmental risk of the residue. In the physical characterization of the residue were analyzed, the surface area, and particle size distribution. In chemical characterization, the material powder was subjected to testing of X-ray fluorescence (XRF). Microstructural characterization was performed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The residue was utilized like addition by substitution of cement in concrete in the percentages of 10% and 15% by weight of Portland cement. It was evaluated properties of concrete in the fresh and hardened state, such as compressive strength, modulus of elasticity, absorption of water by total immersion and by capillarity. The results showed that the residue can be used in cement matrix and improve some properties of concrete. Thus, the CSR may contribute to improved sustainability and benefit the construction industry.


RSC Advances ◽  
2016 ◽  
Vol 6 (53) ◽  
pp. 47373-47381 ◽  
Author(s):  
Maxime Bodennec ◽  
Qing Guo ◽  
Dérick Rousseau

Lecithin-based oleogels consist of a worm-like entangled fibrous 3D network. Small angle X-ray diffraction suggests that these microfibres are formed by the packing of reverse hexagonal (HII) tubules parallel to the axis of fibres.


2012 ◽  
Vol 616-618 ◽  
pp. 1732-1735 ◽  
Author(s):  
Xi Hai Shen ◽  
Yu Gang Zheng ◽  
Liang Chang ◽  
Jin Jia Guo ◽  
Song Bin Ye ◽  
...  

Aiming at the glass-to-metal seals serving in the Solar Thermal Power (STP), glass-to-metal vacuum brazed joints were studied. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were performed to examine the microstructure and element contents of interface seam on the glass-to-metal vacuum brazed joints. Also, the compositional concentration of the interface seam was measured by using energy dispersive spectroscopy (EDS).


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4313-4322 ◽  
Author(s):  
Nadia Embarek ◽  
Nabahat Sahli ◽  
Mohammed Belbachir

Nanocomposites of linear poly(3-glycidoxypropyltrimethoxysilane) based on Algerian natural organophilic clay: montmorillonite–cetyltrimethylammonium named Maghnite-CTA were prepared by enhancing the dispersion of the matrix polymer in sheets of the organoclay. The effect of the organoclay, used with different amounts (3, 5, and 7% by weight) and the preparation method were studied in order to determine and evaluate their structural, morphological and thermal properties. X-ray diffraction analysis of obtained nanocomposites showed a significant change in the distance interlayer of montmorillonite–cetyltrimethylammonium. Therefore, interlayer expansion and exfoliation of linear poly(3-glycidoxypropyltrimethoxysilane) between layers of montmorillonite–cetyltrimethylammonium were observed. The thermal properties of the prepared nanocomposites were given by thermogravimetric analysis. The structure and morphology of the obtained materials were determined respectively by Fourier transform infrared spectroscopy and scanning electronic microscopy. The results obtained have approved the privilege of the intercalation of linear poly(3-glycidoxypropyltrimethoxysilane) in the interface of montmorillonite–cetyltrimethylammonium and the best quantity of organoclay required to prepare nanocomposite with a high thermal stability is 5% (by weight).


2016 ◽  
Vol 869 ◽  
pp. 159-163
Author(s):  
Danúbia Lisbôa da Costa ◽  
Ingrid Mayara Medeiros Fernandes ◽  
Aluska Nascimento Simões Braga ◽  
Rosiane Maria da Costa Farias ◽  
Romualdo Rodrigues Menezes ◽  
...  

Ornamental rocks are among the most promising business areas of the mineral sector, raising the necessity for, besides beauty, investments in quality, safety and characterization in the various application fields of these rocks. So, this work aims at the microstructural characterization of the class of these rocks: the Cariri Rocks, also known the limestone, which are calcareous rocks mainly formed by calcium and magnesium carbonate, possibly presenting variations due to their origins. For characterization, we studied four samples, being two from Chapada do Apodi and two from Chapada do Araripe, characterized physically and micro-structurally through chemical analysis, X-ray diffraction, optical micrography and porosimetry tests. The results prove that the limestones are calcitic and dolomitic, and present porosity varying from 5 to 15%, with pores concentration between 100nm and 10μm, besides the high microstructural heterogeneity.


1998 ◽  
Vol 13 (9) ◽  
pp. 2580-2587 ◽  
Author(s):  
K. H. Ryu ◽  
J-M. Yang

The characteristics of nanosized silicon nitride powders with doped Y2O3 and Al2O3 fabricated by a plasma-reacted chemical process were investigated. The chemical compositions of the powders were analyzed by wet chemical analysis. The morphology and the size distribution were determined by transmission electron microscopy (TEM). TEM with energy dispersive spectroscopy (EDS) was used to verify the existence of sintering additives in each individual particle. The crystal structure of the powders was identified by the selected area diffraction pattern (SADP). X-ray diffraction (XRD) technique was used for phase analysis and the measurement of degree of crystallinity. The characteristics of chemical bonding was analyzed by using Fourier transform infrared spectroscopy (FTIR).


1987 ◽  
Vol 99 ◽  
Author(s):  
G. J. Fisanick ◽  
P. Mankeewicht ◽  
W. Skocpolt ◽  
R. E. Howardt ◽  
A. Dayem ◽  
...  

ABSTRACTBa2YCu3O7 films produced by co-evaporation of BaF2, Cu and Y onto <100> S1TiO3 substrates in an O2 ambient followed by post-annealing were analyzed using RBS, X-ray diffraction and Auger microscopy. These films exhibit Tc's (R=0) of =90K and a best Jc of > 1.0×106 A/cm2 at 81K for a =2500A thick film. RBS and Auger depth profiling limit the level of F present in the post-annealed films to <5 at. %, although F is evident in the as-deposited material. RBS channeling experiments yield a Xmin=31%, demonstrating the epitaxial quality of the films. X-ray diffraction shows that the films are predominantly oriented with c-axis perpendicular to the substrate, with narrow mosaic spread in-plane. A small portion of the film is in the form of needles oriented with a-axis perpendicular to the substrate, whose areal density is dependent on annealing conditions and local film stoichiometry. Scanning Auger microscopy confirms that the needles and c-axis plateaus have the same metal and oxygen stoichiometry. Also present in the film are insulating balls which appear to nucleate terraces in the c-axis perpendicular structure. Scanning Auger shows that these features are also close to the metals stoichiometry, but are C rich compared to the needles. The plateaus are covered with =11 times more C than the needles, indicating that the basal plane surface is highly reactive. Auger depth profiling and RBS show little evidence for interdiffusion.


2007 ◽  
Vol 353-358 ◽  
pp. 3051-3054 ◽  
Author(s):  
Hong Gu ◽  
Yong Zhi Zou ◽  
Zheng Bin Xu ◽  
Jian Min Zeng

In the present paper, TiB2/Al composite with 5% volume fraction of TiB2 was fabricated by LSM method. The effects of purification and degassing methods on TiB2/Al composite were examined by means of X-ray diffraction (XRD) and image analysis. Hydrogen contents in the molten composites were detected and compared among flux, inert gas and vacuum purification processes. The experimental results indicate that under general cast condition a majority of the TiB2 particles distribute on grain boundary, and only a few particles disperse within grains. The flux and vacuum purifications have no virtual impact on the distribution of TiB2 and the fraction of TiB2 remains the same after purification. However, degassing with inert gas will be detrimental; the TiB2 particles will be separated and removed from the matrix. The hydrogen contents for flux, inert gas and vacuum processes are 0.15ml/100g/Al, 0.12ml/100g/Al and 0.12ml/100g/Al respectively.


Sign in / Sign up

Export Citation Format

Share Document