m23c6 carbides
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 26)

H-INDEX

11
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Alexandra Fedoseeva ◽  
Ivan Nikitin ◽  
Nadezhda Dudova ◽  
John Hald ◽  
Rustam Kaibyshev

This paper presents the results of an experimental investigation of a 12% Cr steel where a significant increase in Charpy impact toughness and a slight decrease in ductile-brittle transition temperature (DBTT) from 70 °C to 65 °C were obtained through thermo-mechanical processing, including interim hot forging at 1050 °C with long-term annealing at 1000 °C, as compared with conventional heat treatment. At lower temperatures ranging from −20 °C to 25 °C, the value of impact toughness comprised ~40 J cm−2 in the present 12% Cr steel subjected to thermo-mechanical processing. The amount of δ-ferrite decreased to 3.8%, whereas the size of prior austenite grains did not change and comprised about 40–50 μm. The boundaries between δ-ferrite and martensitic laths were decorated by continuous chains of Cr- and W-rich carbides. M23C6 carbides also precipitated along the boundaries of prior austenite grains, packets, blocks and martensitic laths. Thermo-mechanical processing increased the mean size of M23C6 carbides and decreased their number particle densities along the lath boundaries. Moreover, the precipitation of a high number of non-equilibrium V-rich MX particles was induced by hot forging and long-term normalizing at 1000 °C for 24 h.


2021 ◽  
Author(s):  
Michelle Kent ◽  
Kip Findley

Abstract Hydrogen embrittlement (HE) susceptibility was investigated for Alloy 718 and Alloy 945X specimens heat treated to a set of conditions within the specifications of API Standard 6ACRA. Heat treatments were selected to simulate the potential variation in thermal history in thick sections of bar or forged products and produce various amounts of discontinuous grain boundary δ phase in Alloy 718 and M23C6 carbides in Alloy 945X, while maintaining a constant hardness in the range of 35-45 HRC for Alloy 718 and 34-42 HRC for Alloy 945X. Time-temperature-transformation (TTT) diagrams and experimentation were used to select a set of heat treatments containing no δ phase, a small quantity of δ, and a larger quantity of δ in Alloy 718. The presence of δ phase has not been verified for the moderate condition. A similar approach was taken regarding M23C6 carbides in Alloy 945X. Incremental step loading (ISL) tests were conducted under in-situ cathodic charging on circular notch tensile (CNT) specimens in a 0.5 M H2SO4 solution. During the test, the direct current potential drop (DCPD) was measured across the notch to determine the stress intensity associated with unstable crack growth. Results indicate that even very small quantities of δ phase in Alloy 718 are detrimental to HE resistance. Both Alloy 718 and Alloy 945X show decreases in HE resistance with aging, with a greater degradation in Alloy 718.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1340
Author(s):  
Abdelkrim Redjaïmia ◽  
Antonio Manuel Mateo Garcia

This study is focused on isothermal and anisothermal precipitation of M23C6 carbides from the fully ferritic structure of the (γ + δ) austenitic-ferritic duplex stainless steel X2CrNiMo2253, (2205). During isothermal heat treatments, small particles of K-M23C6 carbide precipitates at the δ/δ grain-boundaries. Their formation precedes γ and σ-phases, by acting as highly potential nucleation sites, confirming the undertaken TEM investigations. Furthermore, anisothermal heat treatment leads to the formation of very fine islands dispersed throughout the fully δ-ferritic matrix. TEM characterization of these islands reveals a particular eutectoid, reminiscent of the well-known (γ-σ)—eutectoid, usually encountered in this kind of steel. TEM and electron microdiffraction techniques were used to determine the crystal structure of the eutectoid constituents: γ-Austenite and K-M23C6 carbides. Based on this characterization, orientation relationships between the two latter phases and the ferritic matrix were derived: cube-on-cube, on one hand, between K-M23C6 and γ-Austenite and Kurdjumov-Sachs, on the other hand, between γ-Austenite and the δ-ferritic matrix. Based on these rational orientation relationships and using group theory (symmetry analysis), the morphology and the only one variant number of K-M23C6 in γ-Austenite have been elucidated and explained. Thermodynamic calculations, based on the commercial software ThermoCalq® (Thermo-Calc Software, Stockholm, Sweden), were carried out to explain the K-M23C6 precipitation and its effect on the other decomposition products of the ferritic matrix, namely γ-Austenite and σ-Sigma phase. For this purpose, the mole fraction evolution of K-M23C6 and σ-phase and the mass percent of all components entering in their composition, have been drawn. A geometrical model, based on the corrugated compact layers instead of lattice planes with the conservation of the site density at the interface plane, has been proposed to explain the transition δ-ferrite ⇒ {γ-Austenite ⇔ K-M23C6}.


Alloy Digest ◽  
2021 ◽  
Vol 70 (5) ◽  

Abstract Rolled Alloys 188 is a cobalt-based superalloy with a unique combination of high temperature strength and oxidation resistance, along with adequate ductility even after prolonged exposure to the 760–870 °C (1400–1600 °F) temperature range. Cobalt alloys have an inherent advantage over the nickel-based grades in high temperature creep. Rolled Alloys 188 is solid solution strengthened by a 14% tungsten addition, and further strengthened by M6C and M23C6 carbides. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Co-136. Producer or source: Rolled Alloys Inc.


2021 ◽  
Vol 72 (4) ◽  
pp. 22-26
Author(s):  
Hanna Purzyńska ◽  
Grzegorz Golański ◽  
Michał Kwiecień ◽  
Dariusz Paryż

The article presents an analysis of precipitation processes in heat-resistant TP347HFG steel after 41,000 h of operation at 585°C. Microstructure investigation showed that the use of the tested steel resulted mainly in the precipitation processes occurring at grain boundaries. Identification of the precipitates showed the presence of M23C6 carbides and σ phase particles along boundaries. Single M23C6 carbide particles were revealed also at twin boundaries. Inside austenite grains, apart from large, primary precipitates, finely-dispersed secondary NbX particles (X = C,N) were also observed.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1000
Author(s):  
Biao Deng ◽  
Dapeng Yang ◽  
Guodong Wang ◽  
Ziyong Hou ◽  
Hongliang Yi

Austenitizing temperature is one decisive factor for the mechanical properties of medium carbon martensitic stainless steels (MCMSSs). In the present work, the effects of austenitizing temperature (1000, 1020, 1040 and 1060 °C) on the microstructure and mechanical properties of MCMSSs containing metastable retained austenite (RA) were investigated by means of electron microscopy, X-ray diffraction (XRD), as well as tensile and impact toughness tests. Results suggest that the microstructure including an area fraction of undissolved M23C6, carbon and chromium content in matrix, prior austenite grain size (PAGS), fraction and composition of RA in studied MCMSSs varies with employed austenitizing temperature. By optimizing austenitizing temperature (1060 °C for 40 min) and tempering (250 °C for 30 min) heat treatments, the MCMSS demonstrates excellent mechanical properties with the ultimate tensile strength of 1740 ± 8 MPa, a yield strength of 1237 ± 19 MPa, total elongation (ductility) of 10.3 ± 0.7% and impact toughness of 94.6 ± 8.0 Jcm−2 at room temperature. The increased ductility of alloys is mainly attributed to the RA with a suitable stability via a transformation-induced plasticity (TRIP) effect, and a matrix containing reduced carbon and chromium content. However, the impact toughness of MCMSSs largely depends on M23C6 carbides.


2021 ◽  
Vol 851 ◽  
pp. 156694
Author(s):  
Xia Zhao ◽  
Min Wang ◽  
Xian-Chao Hao ◽  
Xiang-dong Zha ◽  
Ming Gao ◽  
...  

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 60
Author(s):  
Alexandra Fedoseeva ◽  
Ivan Nikitin ◽  
Evgeniy Tkachev ◽  
Roman Mishnev ◽  
Nadezhda Dudova ◽  
...  

Five Co-modified P92-type steels with different contents of Cr, W, Mo, B, N, and Re have been examined to evaluate the effect of the chemical composition on the evolution of Laves phase during creep at 650 °C. The creep tests have been carried out at 650 °C under various applied initial stresses ranging from 80 to 200 MPa until rupture. An increase in the B and Cr contents leads to a decrease in the size and volume fraction of M23C6 carbides precipitated during tempering and an increase in their number particle density along the boundaries. In turns, this affects the amount of the nucleation sites for Laves phase during creep. The (W+Mo) content determines the diffusion growth and coarsening of Laves phase during creep. Susceptibility of Laves phase to coarsening with a high rate is caused by the large difference in Gibbs energy between fine and large particles located at the low-angle and high-angle boundaries, respectively, and can cause the creep strength breakdown. The addition of Re to the 10%Cr steel with low N and high B contents provides the slowest coarsening of Laves phase among the steels studied.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 66
Author(s):  
Dmitry Shaysultanov ◽  
Kazimzhon Raimov ◽  
Nikita Stepanov ◽  
Sergey Zherebtsov

The effect of friction stir welding parameters on the structure and properties of Fe49Mn30Cr10Co10C1 high-entropy alloy welds was studied. Due to the development of the TRIP effect, the mechanical behaviour of this alloy was associated with the γ fcc-to-ε hcp martensitic transformation. In the initial condition, the microstructure of the program alloy comprised equiaxed fcc grains and small fractions of the hcp ε-martensite (~5%) and M23C6 carbides (~4%). Friction stir welding of the program alloy resulted in recrystallization of the stir zone and a decrease in the fraction of the carbides to 1–2%; however, the percentage of the hcp phase remained at nearly the same level as that in the initial condition. Post-welding tests showed a considerable increase in the strength and microhardness of the welds both due to the recrystallization-induced decrease in grain size and martensitic transformation.


2020 ◽  
pp. 37-41
Author(s):  
Agata Merda ◽  
Klaudia Klimaszewska

The test material was a specimen sampled from sections of a pipe operated for 41,914 hours at a temperature of 575°C and under a steam pressure of 28.2 MPa. The specimen subjected to metallurgical tests was a welded joint made of austenitic steel TP347HFG. The non-destructive tests and the macroscopic tests confirmed the lack of any welding imperfections. The test joint represented quality level B in accordance with related standard requirements. The microstructural tests of the heat-affected zone (HAZ) revealed the presence of the fine-grained austenitic structure with numerous precipitates on grain boundaries – probably M23C6 carbides. In spite of long-lasting operation, the mechanical properties of the test welded joint were high and did not exceed the standard-related requirements concerning the base material.


Sign in / Sign up

Export Citation Format

Share Document