scholarly journals ZnS/Cu2ZnSnS4/CdTe/In Thin Film Structure for Solar Cells

2018 ◽  
Vol 14 (2) ◽  
pp. 5435-5441
Author(s):  
Maarif Ali Jafarov ◽  
E.F. Nasirov ◽  
S.A. Jahangirova

A solar cell with glass/ITO/ZnS/Cu2ZnSnS4/CdTe/In structure has been fabricated using all-electrodeposited ZnS, Cu2ZnSnS4 and CdTe thin films. The three semiconductor layers were electrodeposited using a two-electrode system for process simplification. The incorporation of a wide bandgap amorphous ZnS as a buffer/window layer to form  ITO/ZnS/Cu2ZnSnS4/CdTe/In solar cell resulted in the formation of this 3-layer device structure. This has yielded corresponding improvement in all the solar cell parameters resulting in a conversion efficiency >12% under AM1.5 illumination conditions at room temperature.  These results demonstrate the advantages of the multi-layer device architecture over the conventional 2-layer structure.

MRS Advances ◽  
2016 ◽  
Vol 1 (43) ◽  
pp. 2907-2916 ◽  
Author(s):  
Shulong Lu ◽  
Shiro Uchida

ABSTRACTWe studied the InGaP/GaAs//InGaAsP/InGaAs four-junction solar cells grown by molecular beam epitaxy (MBE), which were fabricated by the novel wafer bonding. In order to reach a higher conversion efficiency at highly concentrated illumination, heat generation should be minimized. We have improved the device structure to reduce the thermal and electrical resistances. Especially, the bond resistance was reduced to be the lowest value of 2.5 × 10-5 Ohm cm2 ever reported for a GaAs/InP wafer bond, which was obtained by the specific combination of p+-GaAs/n-InP bonding and by using room-temperature wafer bonding. Furthermore, in order to increase the short circuit current density (Jsc) of 4-junction solar cell, we have developed the quality of InGaAsP material by increasing the growth temperature from 490 °C to 510 °C, which leads to a current matching. In a result, an efficiency of 42 % at 230 suns of the four-junction solar cell fabricated by room-temperature wafer bonding was achieved.


MRS Advances ◽  
2017 ◽  
Vol 2 (53) ◽  
pp. 3147-3156 ◽  
Author(s):  
Erenn Ore ◽  
Gehan Amaratunga ◽  
Stefaan De Wolf

ABSTRACTIn the conventional crystalline silicon heterojunction solar cell with the intrinsic thin layer structure (the HIT solar cell), a p-doped thin film silicon or its alloy (pDTF-Si/A) is used as the hole collecting window layer. However, the parasitic absorbance in the pDTF-Si/A window layer, and the toxic, explosive diborane gas used for p-doping are limiting factors for achieving HIT cells with reduced processing costs and / or higher efficiencies. In this work, pDTF-Si/A is replaced by V2Ox, which is deposited by a simple physical vapor deposition technique. Due to the wide band gap of V2Ox, the HIT solar cell with the V2Ox window layer generates a higher short-circuit current density than the reference conventional HIT cell under 1 sun, and achieves an open-circuit voltage of 0.7 V. Furthermore, the charge carrier lifetime and pseudo-efficiency values of the HIT solar cell with the V2Ox window layer indicate that this cell has the potential to outperform the conventional HIT cell in terms of the power conversation efficiency under the standard test conditions.


1995 ◽  
Vol 377 ◽  
Author(s):  
Keda Wang ◽  
Daxing Han

ABSTRACTWe have measured the intensity of electroluminescence (EL) and its energy spectrum in a-Si:H solar cells having an initial energy conversion efficiency from 5.75 to 9.8 %, and open-circuit voltages (Voc) between 0.799 and 0.952 V. We found that (a) at room temperature, EL efficiency is proportional to the initial solar cell energy conversion efficiency; (b) the defect energy distribution in the i-layer can be detected by EL energy spectrum at room temperature; and (c) Voc is simply related to the quasi-Fermi level splitting obtainable in the i-layer and that the buffer layer serves to increase this splitting.


2012 ◽  
Vol 358 (23) ◽  
pp. 3243-3247 ◽  
Author(s):  
Baojun Yan ◽  
Lei Zhao ◽  
Bending Zhao ◽  
Jingwei Chen ◽  
Hongwei Diao ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
I. Morsi ◽  
Sh. Ebrahim ◽  
M. Soliman

Polyaniline/n-type Si heterojunctions solar cell are fabricated by spin coating of soluble dodecylbenzene sulfonic acid (DBSA)-doped polyaniline onto n-type Si substrate. The electrical characterization of the Al/n-type Si/polyaniline/Au (Ag) structure was investigated by using current-voltage (I-V), capacitance-voltage (C-V), and impedance spectroscopy under darkness and illumination. The photovoltaic cell parameters, that is, open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and energy conversion efficiency (η) were calculated. The highestJsc,Voc, and efficiency of these heterojunctions obtained using PANI-DBSA as a window layer (wideband gap) and Au as front contact are 1.8 mA/cm2, 0.436 V, and 0.13%, respectively. From Mott-Schottky plots, it was found that order of charge carrier concentrations is3.5×1014and1.0×1015/cm3for the heterojunctions using Au as front contact under darknessness and illumination, respectively. Impedance study of this type of solar cell showed that the shunt resistance and series resistance decreased under illumination.


2013 ◽  
Vol 594-595 ◽  
pp. 3-7
Author(s):  
M.A. Rashid ◽  
F. Malek ◽  
A.N. Al-Khateeb ◽  
F.A. Rosli ◽  
M.A. Humayun ◽  
...  

This paper focuses on the applicability of InN based quantum dot in the active layer of the solar cell to reduce the short circuit current variation above the room temperature. We have investigated numerically the effect of temperature on the short circuit current of the solar cell using InN based quantum dot in the active layer of the solar cell. The numerical results are compared with those obtained by using Ge based quantum dot. The comparison results revealed that the short circuit current has been increased slightly but the variation of short circuit current has been reduced significantly in the case of using InN quantum dot in the active layer of the device structure. As the results, InN can be considered as the best alternative material to fabricate solar cell with higher short circuit current in upcoming decades.


2021 ◽  
pp. 505-516
Author(s):  
Raad A. Rassol ◽  
Rasha F. Hasan ◽  
Sameer M. Ahmed

This research includes the use of CdTe in the design of a solar cell. The SCAPS-1D computer program was used to simulate thin cell capacity of CdTe/CdS by numerical analysis with the addition of a buffer layer (Zn2SnO4) to enhance cell efficiency. The thickness of the window layer (n-CdS) was reduced to 25nm with the inclusion of an insulating layer of 50 nm thickness to prevent leakage towards the forward bias with respect to the lower charge carriers. As for the absorber layer thickness (p-CdTe), it varied between 0.5µm and 6µm. The preferable thickness in the absorbent layer was 1.5µm. Different operating temperatures (298K-388K) were used, while the highest conversion efficiency (η=18.43%) was obtained with the rest of the solar cell parameters (Voc=0.967 V,  Jsc= 26.66 mA/cm2, FF=71.40%).


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1433
Author(s):  
Taoufik Slimani Tlemcani ◽  
Camille Justeau ◽  
Kevin Nadaud ◽  
Daniel Alquier ◽  
Guylaine Poulin-Vittrant

Flexible piezoelectric nanogenerators (PENGs) are very attractive for mechanical energy harvesting due to their high potential for realizing self-powered sensors and low-power electronics. In this paper, a PENG that is based on zinc oxide (ZnO) nanowires (NWs) is fabricated on flexible and transparent Polydimethylsiloxane (PDMS) substrate. The ZnO NWs were deposited on two different seed layer structures, i.e., gold (Au)/ZnO and tin-doped indium-oxide (ITO)/ZnO, using hydrothermal synthesis. Along with the structural and morphological analyses of ZnO NWs, the electrical characterization was also investigated for ZnO NWs-based flexible PENGs. In order to evaluate the suitability of the PENG device structure, the electrical output performance was studied. By applying a periodic mechanical force of 3 N, the ZnO NWs-based flexible PENG generated a maximum root mean square (RMS) voltage and average power of 2.7 V and 64 nW, respectively. Moreover, the comparison between the fabricated device performances shows that a higher electrical output can be obtained when ITO/ZnO seed layer structure is adopted. The proposed ZnO NWs-based PENG structure can provide a flexible and cost-effective device for supplying portable electronics.


2019 ◽  
Vol 87 (3) ◽  
pp. 30101 ◽  
Author(s):  
Abdel-baset H. Mekky

Semiconductor materials cadmium sulfide (CdS) and cadmium telluride (CdTe) are employed in the fabrication of thin film solar cells of relatively excessive power conversion efficiency and low producing price. Simulations of thin film CdS/CdTe solar cell were carried out using SCAPS-1D. The influence of temperature field on the variation of CdTe solar cell parameters such as current–voltage, capacitance–voltage characteristics and the external quantum efficiency was investigated theoretically. For use temperatures, one obtains the external quantum efficiency has the same profiles. However, the effect of the temperature on the Mott-Schottky curves is slightly noted by variations on the characteristics. This conclusion can be used by solar cell manufacturers to improve the solar cell parameters with the biggest possible gain in device performance.


2021 ◽  
Vol 7 ◽  
pp. 4761-4768
Author(s):  
Francelin Edgar Ndi ◽  
Steve Ngoffe Perabi ◽  
Salome Essiane Ndjakomo ◽  
Gregoire Ondoua Abessolo ◽  
Ghislain Mengounou Mengata
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document