scholarly journals Effect of Terbium Additions on Microstructural, Thermal and Mechanical Properties of Eutectic Sn-3.5Ag Pb- Free Solder for Low Cost Electronic Assembly

2019 ◽  
Vol 16 (1) ◽  
pp. 79-94
Author(s):  
Rizk Mostafa Shalaby ◽  
Fatma Elzahraa Ibrahim ◽  
Mostafa Kamal

This work methodically concentrated on the effect of a trace amount of rare earth element terbium, Tb (0.1, 0.2, 0.3, 0.4 and 0.5 wt. %) on the properties of eutectic Sn-3.5 wt. %Ag were studied. The results indicated that addition of Tb rare earth can be refined the microstructure of the solder and intermetallic compound (IMC) Ag3Sn phase appeared in the solder matrix. Add a few quantity of rare earth Tb enhances the hardness and strength of eutectic Sn-Ag lead free solder joint. Also, results indicate that adding Tb to the eutectic Sn-3.5Ag remarkably enhances solderability, reliability, thermal and mechanical properties. It is also found that increasing in mechanical strength can depend on crystalline size refining in addition to some regular precipitates from IMC, Ag3Sn.

2010 ◽  
Vol 22 (5) ◽  
pp. 481-487 ◽  
Author(s):  
Yu-hua Hu ◽  
Song-bai Xue ◽  
Hui Wang ◽  
Huan Ye ◽  
Zheng-xiang Xiao ◽  
...  

2005 ◽  
Vol 04 (04) ◽  
pp. 423-429 ◽  
Author(s):  
S. M. L. NAI ◽  
M. GUPTA ◽  
J. WEI

In this study, Sn - Ag - Cu based nanocomposites with carbon nanotubes (CNTs) as reinforcements were successfully synthesized via the powder metallurgy technique. Lead-free solder powders were firstly blended together with varying weight percentages of CNTs. The materials were then compacted, sintered and finally extruded at room temperature. The extruded materials were characterized for their microstructural, thermal and mechanical properties. The porosity of the nanocomposites was observed to increase with increasing weight percentages of CNTs, accordingly the density of the nanocomposites was reduced. Thermomechanical analysis of the solder nanocomposites showed that the use of CNTs as reinforcements decreased the average coefficient of thermal expansion of the solder matrix. Furthermore, the results of mechanical properties characterization revealed that the addition of CNTs aids in enhancing the microhardness and the overall strength of the nanocomposite solder. An attempt is made in the present study to correlate the variation in weight percentages of the carbon nanotubes with the properties of the resultant nanocomposite materials.


2009 ◽  
Vol 484 (1-2) ◽  
pp. 134-142 ◽  
Author(s):  
A.A. El-Daly ◽  
Y. Swilem ◽  
M.H. Makled ◽  
M.G. El-Shaarawy ◽  
A.M. Abdraboh

2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


2003 ◽  
Vol 32 (4) ◽  
pp. 235-243 ◽  
Author(s):  
Zhigang Chen ◽  
Yaowu Shi ◽  
Zhidong Xia ◽  
Yanfu Yan

2020 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi

Abstract The Sn-3.0Ag-0.5Cu solder alloy is a prominent candidate for the Pb-free solder, and SAC305 solder is generally employed in today’s electronic enterprise. In this study, the formation of intermetallic compounds (Cu6Sn5 and Ag3Sn) at the interface, average neighbour’s particle distance, and the morphological mosaic are examined by the addition of SiC and nickel-coated silicon carbide reinforcements within Sn-3.0Ag-0.5Cu solder. Results revealed that the addition of SiC and SiC(Ni) particles are associated with a small change to the average neighbor’s particle distance and a decrease of clustering rate to a certain limit of the Sn-3.0Ag-0.5Cu solder composites. Moreover, the development of the Cu6Sn5 and the structure of the Ag3Sn are improved with the addition of SiC and Ni coated SiC.


2019 ◽  
Vol 14 (1) ◽  
pp. 651-657
Author(s):  
Talita Mazon ◽  
Guilherme E. Prevedel ◽  
Egont A. Schenkel ◽  
Marcio T. Biasoli

Sign in / Sign up

Export Citation Format

Share Document