Effect of aluminum content on structure, transport and mechanical properties of Sn-Zn eutectic lead free solder alloy rapidly solidified from melt.

2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  

2020 ◽  
Vol 2020 (1) ◽  
pp. 000235-000241
Author(s):  
Fred Fuliang Le ◽  
Rinse van der Meulen ◽  
Yoon Kheong Leong ◽  
Manoj Balakrishnan ◽  
Zunyu Guan

Abstract High melting point (HMP) lead-free solder, hybrid sinter and transient liquidus phase sinter (TLPS) are the emerging lead-free alternatives for the potential replacement of high-lead solder. Lead-free solder is perfectly compatible with existing high-lead soldering processes for clip bond packages. The benefit of hybrid sinter is that it has much higher thermal and electrical conductivity than lead-free or high-lead solder. In this study, ten materials (including lead-free solders, hybrid sinter paste and TLPS) were first evaluated via die shear test. With the initial material screening, two lead-free solders (solder 1 and 2), two hybrid Ag sinter pastes (sinter i and ii) and one TLPS proceeded to internal sample assembly. For the lead-free solders, a process optimization with the aid of vacuum reflow was made to reduce void rate. Due to the slow and unbalanced inter-diffusion of Ag-Cu sintering than Ag-Ag sintering, optimizations to enhance the hybrid Ag sintering include Ag finishing for the die metallization and Ag plating for the clip and bond area of the leadframe. In 0-hour package electrical test, solder 1 and sinter i passed and were sent for reliability testing while solder 2, sinter ii and TLPS failed due to intermetallic compound (IMC) cracking, material bleeding and die cracking, respectively. In the reliability testing, a basic scheme of thermal cycling (TC) 1000 cycles, intermittent operating life (IOL) 750 hrs and highly accelerated temperature and humidity stress test (HAST) 96 hrs was defined for the early feasibility study. 1 of 75 sinter i units failed by TC 1000 cycles due to separation between silver sinter structure and die bottom metallization. Solder 1 passed the basic scheme without defects, and next the material workability and clip bond strength need to be improved to the equivalent level of high-lead solders.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000314-000318
Author(s):  
Tong Jiang ◽  
Fubin Song ◽  
Chaoran Yang ◽  
S. W. Ricky Lee

The enforcement of environmental legislation is pushing electronic products to take lead-free solder alloys as the substitute of traditional lead-tin solder alloys. Applications of such alloys require a better understanding of their mechanical behaviors. The mechanical properties of the lead-free solders and IMC layers are affected by the thermal aging. The lead-free solder joints on the pads subject to thermal aging test lead to IMC growth and cause corresponding reliability concerns. In this paper, the mechanical properties of the lead-free solders and IMCs were characterized by nanoindentation. Both the Sn-rich phase and Ag3Sn + β-Sn phase in the lead-free solder joint exhibit strain rate depended and aging soften effect. When lead-free solder joints were subject to thermal aging, Young's modulus of the (Cu, Ni)6Sn5 IMC and Cu6Sn5 IMC changed in very small range. While the hardness value decreased with the increasing of the thermal aging time.


2010 ◽  
Vol 654-656 ◽  
pp. 2450-2454 ◽  
Author(s):  
De Kui Mu ◽  
Hideaki Tsukamoto ◽  
Han Huang ◽  
Kazuhiro Nogita

High-temperature lead-free solders are important materials for electrical and electronic devices due to increasing legislative requirements that aim at reducing the use of traditional lead-based solders. For the successful use of lead-free solders, a comprehensive understanding of the formation and mechanical properties of Intermetallic Compounds (IMCs) that form in the vicinity of the solder-substrate interface is essential. In this work, the effect of nickel addition on the formation and mechanical properties of Cu6Sn5 IMCs in Sn-Cu high-temperature lead-free solder joints was investigated using Scanning Electron Microscopy (SEM) and nanoindentation. It was found that the nickel addition increased the elastic modulus and hardness of the (Cu, Ni)6Sn5. The relationship between the nickel content and the mechanical properties of the IMCs was also established.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Lei Sun ◽  
Liang Zhang

SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth) and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.


2019 ◽  
Vol 8 (4) ◽  
pp. 11956-11962

Lead-free solders have been the substructure innovation of electronic interconnections for many decenniums due to the widespread utilization of electronic contrivances. SnAg–Cu (SAC) is presently seen as the popular lead-free solder alloy for bundling interconnects in the electronics industry. In this review, the study on the development of low-temperature Pbfree solders using Sn-Bi solder alloys will be discussed regarding thermal behaviour and wettability. The impact of alloying on these compounds is depicted as far as basic microstructural changes, mechanical properties, and reliability. The review closes with a perspective for cutting edge electronic interconnect materials.


2016 ◽  
Vol 857 ◽  
pp. 13-17 ◽  
Author(s):  
Nisrin Adli ◽  
Nurul Razliana Abdul Razak ◽  
Norainiza Saud

The attempt to produce various types of lead-free solder has been actively investigated around the world in order to substitute the harmful SnPb solders. The effects of Zn addition on the microstructure, melting point and microhardness of Sn-0.7Cu lead-free solder were investigated with 1 wt% and 5 wt% of Zn additions. Powder metallurgy (PM) method was used to fabricate these Sn-0.7Cu-Zn lead-free solders. The results revealed that the addition of Zn was able to improve the solder properties. The melting point of Sn-0.7Cu-Zn lead-free solder was decreased drastically as the increasing of Zn additions. The Zn particles were distributed homogenously along the grain boundaries and produced refined dendrite β-Sn, which also lead to a superior microhardness values of solders.


2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


2021 ◽  
Author(s):  
Mohammad Ashraful Haq ◽  
Mohd Aminul Hoque ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract A major problem faced by electronic packaging industries is the poor reliability of lead free solder joints. One of the most common methods utilized to tackle this problem is by doping the alloy with other elements, especially bismuth. Researches have shown Bismuth doped solder joints to mostly fail near the Intermetallic (IMC) layer rather than the bulk of the solder joint as commonly observed in traditional SAC305 solder joints. An understanding of the properties of this IMC layer would thus provide better solutions on improving the reliability of bismuth doped solder joints. In this study, the authors have used three different lead free solders doped with 1%, 2% and 3% bismuth. Joints of these alloys were created on copper substrates. The joints were then polished to clearly expose the IMC layers. These joints were then aged at 125 °C for 0, 1, 2, 5 and 10 days. For each aging condition, the elastic modulus and the hardness of the IMC layers were evaluated using a nanoindenter. The IMC layer thickness and the chemical composition of the IMC layers were also determined for each alloy at every aging condition using Scanning Electron Microscopy (SEM) and EDS. The results from this study will give a better idea on how the percentage of bismuth content in lead free solder affects the IMC layer properties and the overall reliability of the solder joints.


2020 ◽  
Vol 49 (12) ◽  
pp. 7394-7399
Author(s):  
Limeng Yin ◽  
Zhongwen Zhang ◽  
Zilong Su ◽  
Cunguo Zuo ◽  
Zongxiang Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document