scholarly journals DETERMINATION OF OPTIMUM CULTURE CONDITIONS FOR MYCELIAL GROWTH OF Macrolepiota procera MUSHROOM

2020 ◽  
Vol 19 (1) ◽  
pp. 11-20
Author(s):  
Aysun Pekşen ◽  
Beyhan Kibar

Macrolepiota procera, commonly called the Parasol Mushroom, is a delicious mushroom collected from the nature and commonly consumed by the public in many regions of Turkey. This study was conducted to determine the optimum culture conditions (pH, temperature, carbon and nitrogen sources) for mycelial growth of M. procera. Three pH values (pH 5.0, 5.5 and 6.0), four incubation temperatures (15, 20, 25 and 30°C), seven carbon (C) sources (dextrose, glucose, lactose, maltose, mannitol, sucrose and xylose) and six nitrogen (N) sources ((NH4)2HPO4, NH4NO3 and Ca(NO3)2, malt extract, peptone and yeast extract) were investigated. In the second step of the study, the effect of seven pH values (4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7.0) on the mycelial colony diameter was examined at 20 and 25°C since these temperatures gave the best mycelial growth in the previously conducted temperature experiment. The best mycelial growth was determined at pH 6.0. The optimum temperature for mycelial growth of M. procera was found as 25°C. The use of glucose as carbon source and yeast extract and peptone as nitrogen source in the culture medium gave the best results for mycelial growth. Determining of optimum culture conditions for mycelial growth of M. procera will provide important contributions to the fortcoming studies on it’s commercially cultivation in Turkey.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Gustavo Carvalho do Nascimento ◽  
Ryhára Dias Batista ◽  
Claudia Cristina Auler do Amaral Santos ◽  
Ezequiel Marcelino da Silva ◽  
Fabrício Coutinho de Paula ◽  
...  

β-fructofuranosidase (invertase) andβ-D-fructosyltransferase (FTase) are enzymes used in industrial processes to hydrolyze sucrose aiming to produce inverted sugar syrup or fructooligosaccharides. In this work, a blackAspergillussp. PC-4 was selected among six filamentous fungi isolated from canned peach syrup which were initially screened for invertase production. Cultivations with pure carbon sources showed that invertase and FTase were produced from glucose and sucrose, but high levels were also obtained from raffinose and inulin. Pineapple crown was the best complex carbon source for invertase (6.71 U/mL after 3 days of cultivation) and FTase production (14.60 U/mL after 5 days of cultivation). Yeast extract and ammonium chloride nitrogen sources provided higher production of invertase (6.80 U/mL and 6.30 U/mL, respectively), whereas ammonium nitrate and soybean protein were the best nitrogen sources for FTase production (24.00 U/mL and 24.90 U/mL, respectively). Fermentation parameters for invertase using yeast extract wereYP/S= 536.85 U/g andPP= 1.49 U/g/h. FTase production showed values ofYP/S= 2,627.93 U/g andPP= 4.4 U/h using soybean protein. The screening for best culture conditions showed an increase of invertase production values by 5.10-fold after 96 h cultivation compared to initial experiments (fungi bioprospection), while FTase production increased by 14.60-fold (44.40 U/mL) after 168 h cultivation.A. carbonariusPC-4 is a new promising strain for invertase and FTase production from low cost carbon sources, whose synthesized enzymes are suitable for the production of inverted sugar, fructose syrups, and fructooligosaccharides.


2021 ◽  
Vol 63 (2) ◽  
pp. 39-43
Author(s):  
Van Giang Nguyen ◽  
◽  
Thi Bich Thuy Nguyen ◽  
Thi Khanh Linh Vu ◽  
Duy Trinh Nguyen ◽  
...  

Phellinus linteus(Berk. & Curt.) Teng mushroom belonging to the genus Phellinusspp., has high medicinal value. This study was carried out with the aim to evaluate the effects of carbon, nitrogen sources, pH, and temperature on the mycelial growth of the P. linteusstrain. The experimental results showed that glucose and casein with concentrations of 2.0 and 0.2% respectively are identified as the most suitable carbon and nitrogen nutrient sources forP. linteus. Conversely, the mycelia of P. linteusare not able to grow on the urea media. Mycelium of P. linteus growths well at 7-10 pH and temperature at 30oC. When mycelia are incubated in these conditions, the rate of mycelial growth of P. linteus reaches 5.0 mm/day with thick density even distribution, and adherence to the substrate firmly.


2016 ◽  
Author(s):  
Wenfa Ng ◽  
Yen-Peng Ting

Microbes for environmental research should be cultured in growth media with characteristics (e.g., pH, ionic strength, and organic and ionic composition) as close to their original habitat as possible. Additionally, the medium should also enable high cell density to be obtained - needed for providing sufficient cells in subsequent experiments. This in-progress report describes the formulation of a medium with an environmentally-relevant composition (lack of complex organics), and that allows aerobic high cell density cultivation of Escherichia coli DH5α in shake flasks. The formulated medium comprises four components: a buffer system (K2HPO4: 12.54 g/L and KH2PO4: 2.31 g/L), vitamins (yeast extract: 12.0 g/L), salts (NaCl: 5.0 g/L and MgSO4: 0.24 g/L), and carbon and nitrogen sources (D-Glucose: 6.0 g/L and NH4Cl: 1.5 g/L). Notable characteristics of this medium were: high capacity phosphate buffer system (89 mM phosphate); 1:1 molar ratio between D-Glucose and NH4Cl; and yeast extract providing trace elements and a secondary carbon and nitrogen source. Growth experiments revealed that an OD600nm of 9 was attained after 24 hours of cultivation at 37 oC. Glucose and NH4Cl serve as primary carbon and nitrogen sources for this phase of growth. After 48 hours, the OD600nm reached 11, where carbohydrates, lipids and proteins in yeast extract provided the nutrients for biomass formation. Broth’s pH varied between 5.5 and 7.8 during cultivation, which was in the range conducive for E. coli growth. In comparison, the OD600nm of E. coli reached 1.4, 3.2, and 9.2 in three commonly used complex media; Nutrient Broth, LB Lennox, and Tryptic Soy Broth, respectively, over 48 hours under identical culture conditions. In addition, the formulated medium was able to maintain a large viable cell population for a longer period of time (three days) compared to Tryptic Soy Broth. Thus, preliminary data suggested that the formulated medium holds potential for use as a high cell density aerobic growth medium for Gram-negative bacteria.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 461 ◽  
Author(s):  
Soo Kweon Lee ◽  
Ju Hun Lee ◽  
Hyeong Ryeol Kim ◽  
Youngsang Chun ◽  
Ja Hyun Lee ◽  
...  

Cordycepin, a beneficial bioactive product specifically found in Cordyceps, has received attention in various bioindustrial applications such as in pharmaceuticals, functional foods, and cosmetics, due to its significant functions. However, low productivity of cordycepin is a barrier to commercialization. In this study, Cordyceps militaris was mutated by UV irradiation to improve the cordycepin production. The highest producer KYL05 strain was finally selected and its cordycepin production was increased about 1.5-fold compared to wild type. In addition, the effects of culture conditions were fundamentally investigated. Optimal conditions were as follows: pH 6, temperature of 25 °C, shaking speed of 150 rpm, and culture time of 6 days. Effects of medium component on cordycepin production were also investigated by using various carbon and nitrogen sources. It was found that glucose and casein hydrolysate (CH) were most effective as carbon and nitrogen sources in cordycepin production (2.3-fold improvement) with maximum cordycepin production of about 445 mg/L. In particular, production was significantly affected by CH. These results should be of value in improving the efficiency of mass production of cordycepin.


Author(s):  
Whallans Raphael Couto Machado ◽  
Lucas Gomes da Silva ◽  
Ellen Silva Lago Vanzela ◽  
Vanildo Luiz Del Bianchi

Abstract This study aimed to improve the physical and nutritional process conditions for the production of carotenoids by the newly isolated Rhodotorula mucilaginosa, a red basidiomycete yeast. The carotenoid bioproduction was improved using an experimental design technique, changing the process characteristics of agitation (130 rpm to 230 rpm) and temperature (25 °C to 35 °C) using seven experiments, followed by a 25-1 fractional design to determine the relevant factors that constitute the culture medium (glucose, malt extract, yeast extract, peptone and initial pH). A complete second order experimental design was then carried out to optimize the composition of the culture medium, the variables being yeast extract (0.5 to 3.5 g/L), peptone (1 to 5 g/L) and the initial pH (5.5 to 7.5), with 17 experiments. The maximum carotenoid production was 4164.45 μg/L (252.99 μg/g), obtained in 144 h in YM (yeast malt) medium with 30 g/L glucose, 10 g/L malt extract, 2 g/L yeast extract, 3 g/L peptone, an initial pH 6, 130 rpm and 25 °C, demonstrating the potential of this yeast as a source of bio-pigments. In this work, the nitrogen sources were the factors that most influenced the intracellular accumulation of carotenoids. The yeast R. mucilaginosa presented high production at a bench level and may be promising for commercial production.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Alapati Kavitha ◽  
Muvva Vijayalakshmi

An enzyme-based drug, L-asparaginase, was produced byNocardia levisMK-VL_113 isolated from laterite soils of Guntur region. Cultural parameters affecting the production of L-asparaginase by the strain were optimized. Maximal yields of L-asparaginase were recorded from 3-day-old culture grown in modified asparagine-glycerol salts broth with initial pH 7.0 at temperature30∘C. Glycerol (2%) and yeast extract (1.5%) served as good carbon and nitrogen sources for L-asparaginase production, respectively. Cell-disrupting agents like EDTA slightly enhanced the productivity of L-asparaginase. Ours is the first paper on the production of L-asparaginase byN. levis.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1132-1136 ◽  
Author(s):  
C. F. Hong ◽  
H. Y. Hsieh ◽  
C. T. Chen ◽  
H. C. Huang

Guava wilt, caused by Nalanthamala psidii, has become an important disease of guava (Psidium guajava) in Taiwan since the 1970s. This study was conducted to develop a semiselective medium for detecting N. psidii in soil and in tissues of diseased guava trees. Among 9 carbon and 21 nitrogen compounds tested in a modified Czapek-Dox medium, the most effective carbon and nitrogen sources for mycelial growth of N. psidii were sucrose and glycine, respectively. Among eight fungicides tested, iprodione at 5 μg ml–1 and azoxystrobin at 1 μg ml–1 were the most effective fungicides for detection of N. psidii in artificially infested soil or in naturally infected guava debris. Based on the requirement for carbon and nitrogen sources and response to fungicides, a semiselective medium designated as modified sucrose-glycine semiselective medium (mSGSSM) was developed for isolation of N. psidii, using the modified Czapek-Dox medium containing 3% sucrose, 0.3% glycine, iprodione at 5 μg ml–1, azoxystrobin at 1 μg ml–1, streptomycin at 200 μg ml–1, and neomycin at 200 μg ml–1. Colonies of N. psidii on mSGSSM at 30°C for 5 to 10 days were white to orange with sparse aerial hyphae. N. psidii was detected more accurately and efficiently on mSGSSM than on other media, including potato dextrose agar, modified Nash-Snyder medium, and modified Czapek-Dox medium. This semiselective medium is effective in detection of N. psidii from various parts of diseased guava trees and in soil; therefore, it would be a useful medium for etiological, ecological, and epidemiological studies of guava wilt.


2020 ◽  
Vol 10 (24) ◽  
pp. 8867
Author(s):  
Osama M. Darwesh ◽  
Ibrahim A. Matter ◽  
Hesham S. Almoallim ◽  
Sulaiman A. Alharbi ◽  
You-Kwan Oh

The color of food is a critical factor influencing its general acceptance. Owing to the effects of chemical colorants on health, current research is directly aimed at producing natural and healthy food colorants from microbial sources. A pigment-producing fungal isolate, obtained from soil samples and selected based on its rapidity and efficiency in producing red pigments, was identified as Monascus ruber OMNRC45. The culture conditions were optimized to enhance pigment production under submerged fermentation. The optimal temperature and pH for the highest red pigment yield were 30 °C and 6.5, respectively. The optimum carbon and nitrogen sources were rice and peptone, respectively. The usefulness of the pigment produced as a food colorant was evaluated by testing for contamination by the harmful mycotoxin citrinin and assessing its biosafety in mice. In addition, sensory evaluation tests were performed to evaluate the overall acceptance of the pigment as a food colorant. The results showed that M. ruber OMNRC45 was able to rapidly and effectively produce dense natural red pigment under the conditions of submerged fermentation without citrinin production. The findings of the sensory and biosafety assessments indicated the biosafety and applicability of the red Monascus pigment as a food colorant.


2007 ◽  
Vol 72 (8-9) ◽  
pp. 757-765 ◽  
Author(s):  
Sanja Grbavcic ◽  
Suzana Dimitrijevic-Brankovic ◽  
Dejan Bezbradica ◽  
Slavica Siler-Marinkovic ◽  
Zorica Knezevic

A wild yeast strain isolated from spoiled soybean oil and identified as Candida utilis initially presented rather low lipase activity (approximately 4 IU dm-3) in submerged culture in a universal yeast medium containing 2 % malt extract. Studies were undertaken to improve the lipase production. The best yields of lipase were obtained with a medium supplemented with caprylic and oleic acids as inducers, but higher concentrations of the former (> 0.5 %) had a negative effect on the lipase production and cell growth. The type of nitrogen source seemed also to be very important. The highest lipolytic activity of 284 IU dm-3 was achieved after 5 days of fermentation in a medium containing oleic acid and hydrolyzed casein as carbon and nitrogen sources, respectively, and supplemented with Tween 80?. It was shown that optimization of the fermentation conditions can lead to a significant improvement in the lipase production (more than 70-fold higher compared to the initial value obtained in the non-optimized medium). .


Sign in / Sign up

Export Citation Format

Share Document