macrolepiota procera
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 7 (9) ◽  
pp. 772
Author(s):  
Ivona Jančo ◽  
Marek Šnirc ◽  
Martin Hauptvogl ◽  
Lenka Demková ◽  
Hana Franková ◽  
...  

Wild-growing edible mushrooms are valuable food with a high content of proteins, fibers, antioxidants, and they are characterized by their specific taste and flavor. However, from an ecotoxicological point of view, they are a risk commodity because of their extremely high bioaccumulative capacity to accumulate the risk elements and contaminants from the environment. In the present study, we examined mercury (Hg) contamination in 230 fruiting bodies of Macrolepiota procera (Scop.) Singer and 230 soil/substrate samples, which were collected in foraging seasons 2015–2019 from 22 different locations in Slovakia. Total mercury content was determined by cold-vapor AAS analyzer AMA 254. The level of contamination and environmental risks were assessed by contamination factor (Cf), index of geoaccumulation (Igeo), and potential environmental risk index (PER). Bioaccumulation factor (BAF) was calculated for individual anatomical parts of M. procera. Mercury content in the soil/substrate samples varied between 0.02 and 0.89 mg kg−1 DW, and in mushroom samples between 0.03 and 2.83 mg kg−1 DW (stems), and between 0.04 and 6.29 mg kg−1 DW (caps). The obtained results were compared with the provisional tolerable weekly intake for Hg defined by WHO to determine a health risk resulting from regular and long-term consumption of M. procera.


10.5219/1673 ◽  
2021 ◽  
Vol 15 ◽  
pp. 758-767
Author(s):  
Hana Franková ◽  
Ivona Jančo ◽  
Natália Čeryová

The content of selected elements (Ag, Al, and Zn) in wild edible Parasol mushroom (Macrolepiota procera Scop. Singer) collected from five sites in Slovakia – Lazy pod Makytou, Lozorno, Nemečky, Tesáre, and Zbyňov was investigated. The element analysis was determined using the ICP-OES method. The average concentrations of Ag, Al, and Zn in M. procera caps ranged as follows: 0.41 – 3.23, 16.6 – 113, and 73.4 – 111 mg kg-1 dry weight, respectively. Also, Spearman’s correlation test was used to determine the correlations between Parasol mushroom caps and stems in the content of Ag, Al, and Zn. Subsequently, the obtained data on the content of the monitored elements in M. procera caps were used for the evaluation of health risks arising from the consumption of M. procera. Although mushrooms are an important part of the diet, they are consumed mainly as a seasonal delicacy therefore, the intake of the monitored elements from the consumption of M. procera may be limited. Regular and long-term consumption of M. procera caps from investigated sites does not pose any health risks to the consumers.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 575
Author(s):  
El Hadi Erbiai ◽  
Luís Pinto da Silva ◽  
Rabah Saidi ◽  
Zouhaire Lamrani ◽  
Joaquim C.G. Esteves da Silva ◽  
...  

The present study aimed to investigate the chemical composition, bioactive compounds, and antioxidant activity of two wild edible mushrooms, the honey fungus (Armillaria mellea) and the parasol mushroom (Macrolepiota procera), collected from Northern Morocco (MA) and Portugal (PT). Those species were chosen due to their edibility, nutraceutical, and medicinal properties. Bioactive compounds (ascorbic acid, tannin, total phenolic, total flavonoid, β-carotene, and lycopene) and their antioxidant activity were determined by spectrophotometric methods. Herein, the fruiting body of the samples revealed a significantly higher amount of bioactive compounds, and values varied between the Moroccan and the Portuguese ones. Methanolic extracts shown a strong antioxidant capacity: Using DPPH free radical-scavenging activity radicals (IC50 1.06–1.32 mg/mL); inhibition of β-carotene bleaching radicals (IC50 0.09–0.53 mg/mL); and, reducing power radicals (IC50 0.52–1.11 mg/mL). The mushroom species with the highest antioxidant capacity was A. mellea from MA. Chemical composition was analyzed by GC-MS and LC-MS methodologies. GC-MS analysis showed that the most abundant biomolecules group was sugar compositions in the four samples (62.90%, 48.93%, 59.00%, and 53.71%) and the main components were galactitol 16.74%, petroselinic acid 19.83%, d-galactose 38.43%, and glycerol 24.43% in A. mellea (MA), A. mellea (PT), M. procera (MA), and M. procera (PT), respectively. LC-MS analysis of individual phenolic compounds revealed that vanillic acid (198.40±2.82 µg/g dry weight (dw) and cinnamic acid (155.20 ± 0.97 µg/g dw) were the main compounds detected in A. mellea, while protocatechuic acid (92.52 ± 0.45 and 125.50 ± 0.89 µg/g dw) was predominated in M. procera for MA and PT samples, respectively. In general, the results of this comparative study demonstrate that the geographic and climatic conditions of the collection site can influence biomolecule compounds and antioxidant properties of wild mushrooms. This study contributes to the elaboration of nutritional, nutraceutical, and pharmaceutical databases of the worldwide consumed mushrooms.


2020 ◽  
Vol 28 (1) ◽  
pp. 389-404
Author(s):  
Mirosław Mleczek ◽  
Anna Budka ◽  
Pavel Kalač ◽  
Marek Siwulski ◽  
Przemysław Niedzielski

AbstractIt has been known since the 1970s that differences exist in the profile of element content in wild-growing mushroom species, although knowledge of the role of mushroom species/families as determinants in the accumulation of diverse element remains limited. The aim of this study was to determine the content of 63 mineral elements, divided into six separate groups in the fruit bodies of 17 wild-growing mushroom species. The mushrooms, growing in widely ranging types of soil composition, were collected in Poland in 2018. Lepista nuda and Paralepista gilva contained not only the highest content of essential major (531 and 14,800 mg kg−1, respectively of Ca and P) and trace elements (425 and 66.3 mg kg−1, respectively of Fe and B) but also a high content of trace elements with a detrimental health effect (1.39 and 7.29 mg kg−1, respectively of Tl and Ba). A high content of several elements (Al, B, Ba, Bi, Ca, Er, Fe, Mg, Mo, P, Sc, Ti or V) in L. nuda, Lepista personata, P. gilva and/or Tricholoma equestre fruit bodies belonging to the Tricholomataceae family suggests that such species may be characterised by the most effective accumulation of selected major or trace elements. On the other hand, mushrooms belonging to the Agaricaceae family (Agaricus arvensis, Coprinus comatus and Macrolepiota procera) were characterised by significant differences in the content of all determined elements jointly, which suggests that a higher content of one or several elements is mushroom species-dependent.


2020 ◽  
Vol 19 (1) ◽  
pp. 11-20
Author(s):  
Aysun Pekşen ◽  
Beyhan Kibar

Macrolepiota procera, commonly called the Parasol Mushroom, is a delicious mushroom collected from the nature and commonly consumed by the public in many regions of Turkey. This study was conducted to determine the optimum culture conditions (pH, temperature, carbon and nitrogen sources) for mycelial growth of M. procera. Three pH values (pH 5.0, 5.5 and 6.0), four incubation temperatures (15, 20, 25 and 30°C), seven carbon (C) sources (dextrose, glucose, lactose, maltose, mannitol, sucrose and xylose) and six nitrogen (N) sources ((NH4)2HPO4, NH4NO3 and Ca(NO3)2, malt extract, peptone and yeast extract) were investigated. In the second step of the study, the effect of seven pH values (4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7.0) on the mycelial colony diameter was examined at 20 and 25°C since these temperatures gave the best mycelial growth in the previously conducted temperature experiment. The best mycelial growth was determined at pH 6.0. The optimum temperature for mycelial growth of M. procera was found as 25°C. The use of glucose as carbon source and yeast extract and peptone as nitrogen source in the culture medium gave the best results for mycelial growth. Determining of optimum culture conditions for mycelial growth of M. procera will provide important contributions to the fortcoming studies on it’s commercially cultivation in Turkey.


Sign in / Sign up

Export Citation Format

Share Document