scholarly journals SALICYLIC ACID INDUCES PHYSIOLOGICAL AND BIOCHEMICAL CHANGES IN PEONY UNDER WATERLOGGING STRESS

2020 ◽  
Vol 19 (1) ◽  
pp. 41-52
Author(s):  
Xiangtao Zhu ◽  
Haojie Shi ◽  
Xueqin Li ◽  
Songheng Jin

In this study, the effects of salicylic acid to antioxidative activity and photosynthetic characteristics in waterlogging stress of two peony cultivars (‘Fengdanbai’ and ‘Mingxing’) were investigated. 4-year-old peony grown in different levels of waterlogging stress and then different concentration prepared SA (0.0, 0.1, 0.5 and 1.0 mmol L–1) sprayed on fresh leaves of peony. The antioxidative enzymes activities include superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), chlorophyll content, relative conductivity and MDA content were measured in leaves about different waterlogging treatment, the photosynthetic characteristics were also measured using photosynthetic measurement system. The results showed that waterlogging stress decreased the chlorophyll content in all peony cultivars leaves, but with SA treatment can inhibit the decrease of chlorophyll content. Relative conductivity increased as the extension of waterlogging time in two cultivars. SA treatment could effectively inhibit the increase of relative conductivity, and 0.5 mmol L–1 of SA was the most suitable concentration. SOD, POD, CAT activity increased first and then decreased in different waterlogging condition, SA significantly increased the activity of various enzymes. MDA content was increase as the expansion of waterlogging time in two cultivars. SA inhibits the increase of MDA content. Of all concentration of SA, 0.5 mmol L–1 was the best concentration to inhibit the waterlogging stress. For the photosynthetic characteristics, the net assimilation rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and intercellular CO2 (Ci) were decreased under different waterlogging condition. SA treatment can increase Pn, Gs, Tr and Ci of peony.

2016 ◽  
Vol 141 (4) ◽  
pp. 363-372 ◽  
Author(s):  
Huifei Shen ◽  
Bing Zhao ◽  
Jingjing Xu ◽  
Xizi Zheng ◽  
Wenmei Huang

Rhododendrons (Rhododendron) are ornamental plants that exhibit poor thermotolerance. Salicylic acid (SA) and Ca2+ regulate the physiological and biochemical mechanisms in plants adapted to adverse environmental conditions. This study investigated the role of SA and CaCl2 in managing heat tolerance of Rhododendron ‘Fen Zhen Zhu’. Plants of the triennial Rhododendron ‘Fen Zhen Zhu’ were pretreated with SA and CaCl2, alone and combined. Following this pretreatment, the plants were subjected to 38/30 °C (day/night) incubation for 6 days, and then allowed to recover for 20 days under 25/17 °C (day/night) in a chamber. Changes in morphology were observed and recorded. Data were collected on plant chlorophyll content, malondialdehyde (MDA) content, H2O2 level, antioxidant enzyme activity, and total soluble protein content. The results revealed that the plant growth was considerably affected by heat stress, the leaves became brown and withered, and the plant defoliated. Under heat stress, chlorophyll content and total soluble protein levels decreased. Peroxidase (POD) activity and superoxide dismutase (SOD) also decreased, whereas the H2O2 and MDA content increased. Individual or combined application of SA and CaCl2 had a positive effect on plant growth, chlorophyll content, total soluble protein levels, and enzymatic antioxidant activity under heat stress. In general, the effect of the combined application of SA and CaCl2 was superior to individual application. In addition, treatment with high CaCl2 concentrations effectively alleviated the decrease in chlorophyll content. However, at low SA and CaCl2 concentrations, SOD and POD activity and total soluble protein accumulation increased whereas MDA and H2O2 levels decreased. These results suggest that SA and CaCl2 may interact to alleviate heat stress.


2020 ◽  
Vol 189 ◽  
pp. 02007
Author(s):  
Wei Gao ◽  
Dongmei Yin ◽  
Zhuqing Han

The effects of waterlogging on antioxidant enzyme activities responses in five different lines, i.e. ABA-deficient mutant (0673) and its control (0535), two ABA over-production transgenic rd29A:NCED1 lines (#2, #7) and Mill. L. cv. New Yorker (WT) were investigated. The waterlogging was mimicked by treating pot plants with flooding. The malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity in the leaves were evaluated in all treatments. The results showed that after 7 days waterlogging treatment, the malondialdehyde (MDA) was increased in all plants, especially in LA0673. Compared with the LA0673, #2 and #7 significantly increase the activities of SOD, POD and CAT under waterlogging stress. Therefore, ABA could improve the waterlogging tolerance of tomato by increasing the activities of antioxidant enzymes under waterlogging stress.


2013 ◽  
Vol 5 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Elnaz SOLEIMANY-FARD ◽  
Khodayar HEMMATI ◽  
Ahmad KHALIGHI

Keeping quality and length of vase life are important factors for evaluation of cut flowers quality, for both domestic and export markets. Studding the effect of pre- and post-harvest salicylic acid applications on keeping quality and vase life of cut alstroemeria flowers during vase period is the approach taken. Aqueous solutions of salicylic acid at 0.0 (with distilled water), 1, 2 and 3 mM were sprayed to run-off (approximately 500 mL per plant), about two weeks before flowers harvest. The cut flowers were harvested in the early morning and both of cut flowers treated (sprayed) and untreated were kept in vase solutions containing salicylic acid at 0.0 (with distilled water), 1, 2 and 3 mM. Sucrose at 4% was added to all treatments as a base solution. The changes in relative fresh weight, water uptake, water loss, water balance, total chlorophyll content and vase life were estimated during vase period. The results showed that the relative fresh weight, water uptake, water balance, total chlorophyll content and vase life decreased significantly while the water loss increased significantly during experiment for all treatments. A significant difference between salicylic acid and control treatments in all measured parameters is observed. During vase period, the salicylic acid treatments maintained significantly a more favourable relative fresh weight, water uptake, water balance, total chlorophyll content and supressed significantly water loss, as compared to control treatment. Also, the results showed that the using salicylic acid increased significantly the vase life cut alstroemeria flowers, over control. The highest values of measured parameters were found when plants were treated by pre + post-harvest application of salicylic acid at 3 mM. The result revealed that the quality attributes and vase life of cut alstroemeria flowers were improved by the use of salicylic acid treatment.


2011 ◽  
Vol 62 (1) ◽  
pp. 25 ◽  
Author(s):  
Muhammad Arslan Ashraf ◽  
Muhammad Sajid Aqeel Ahmad ◽  
Muhammad Ashraf ◽  
Fahad Al-Qurainy ◽  
Muhammad Yasin Ashraf

The effectiveness of exogenous application of K in ameliorating the adverse effects of waterlogging on cotton plants was assessed under greenhouse conditions. Forty-day-old plants were subjected to continuous flooding for 1 week and then K (60 kg ha–1) was applied either as soil application, foliar spray, or in combination. The waterlogging treatment significantly reduced plant height and fresh and dry biomass, photosynthetic pigments, gas exchange parameters and nutrient accumulation (N, K+, Ca2+) in stem, root and leaves of cotton plants, Although Mg2+ content in roots increased significantly due to waterlogging, it was not affected in stem or leaves. In contrast, Mn2+ and Fe2+ contents generally increased under waterlogged conditions. All water relation parameters were also significantly influenced by waterlogging stress. Waterlogged plants supplemented with K showed a significant improvement in growth, photosynthetic pigments and photosynthetic capacity. Potassium supplementation also improved nutrient uptake of waterlogged plants and resulted in significantly higher accumulation of K+, Ca2+, N, Mn2+ and Fe2+ than those plants not supplied with K. Although all modes of K application were effective in mitigating the inhibitory effects of waterlogging, the combined application through soil + foliar spray yielded the best results and the foliar application (alone) being the least effective.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingmei Wei ◽  
Xiu Li ◽  
Rui Yang ◽  
Liulong Li ◽  
Zhuangzhi Wang ◽  
...  

Wheat (Triticum aestivum L.), the most widely cultivated crop, is affected by waterlogging that limited the wheat production. Given the incompleteness of its genome annotation, PacBio SMRT plus Illumina short-read sequencing strategy provided an efficient approach to investigate the genetic regulation of waterlogging stress in wheat. A total of 947,505 full-length non-chimetric (FLNC) sequences were obtained with two wheat cultivars (XM55 and YM158) with PacBio sequencing. Of these, 5,309 long-non-coding RNAs, 1,574 fusion genes and 739 transcription factors were identified with the FLNC sequences. These full-length transcripts were derived from 49,368 genes, including 47.28% of the genes annotated in IWGSC RefSeq v1.0 and 40.86% genes encoded two or more isoforms, while 27.31% genes in the genome annotation of IWGSC RefSeq v1.0 were multiple-exon genes encoding two or more isoforms. Meanwhile, the individuals with waterlogging treatments (WL) and control group (CK) were selected for Illumina sequencing. Totally, 6,829 differentially expressed genes (DEGs) were detected from four pairwise comparisons. Notably, 942 DEGs were overlapped in the two comparisons (i.e., XM55-WL vs. YM158-WL and YM158-WL vs. YM158-CK). Undoubtedly, the genes involved in photosynthesis were downregulated after waterlogging treatment in two cultivars. Notably, the genes related to steroid biosynthesis, steroid hormone biosynthesis, and downstream plant hormone signal transduction were significantly upregulated after the waterlogging treatment, and the YM158 variety revealed different genetic regulation patterns compared with XM55. The findings provided valuable insights into unveiling regulation mechanisms of waterlogging stress in wheat at anthesis and contributed to molecular selective breeding of new wheat cultivars in future.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Manabu Tobisa ◽  
Masataka Shimojo ◽  
Yasuhisa Masuda

We investigated the root distribution and nitrogen fixation activity of American jointvetch (Aeschynomene americanaL.) cv. Glenn, under waterlogging treatment. The plants were grown in pots under three different treatments: no waterlogging (control), 30 days of waterlogging (experiment 1), and 40 days of waterlogging (experiment 2). The plants were subjected to the treatments on day 14 after germination. Root dry matter (DM) weight distribution of waterlogged plants was shallower than controls after day 20 of waterlogging. Throughout the study period, the total root DM weight in waterlogged plants was similar to that in the controls. Enhanced rooting (adventitious roots) and nodule formation at the stem base were observed in waterlogged plants after day 20 of waterlogging. The average DM weight of individual nodules on the region of the stem between the soil surface and water surface of waterlogged plants was similar to that of individual taproot nodules in the controls. Waterlogged plants had slightly greater plant DM weight than the controls after 40 days of treatment. The total nitrogenase activity (TNA) of nodules and nodule DM weight were higher in waterlogged plants than in the controls. Waterlogged American jointvetch had roots with nodules both around the soil surface and in the area between the soil surface and water surface after 20 days of waterlogging, and they maintained high nitrogenase activity and net assimilation rate that resulted in an increased growth rate.


2019 ◽  
Vol 41 (1) ◽  
pp. 42629 ◽  
Author(s):  
Mauro Martinez ◽  
Agustín Francisco Arata ◽  
Laura Lázaro ◽  
Sebastian Alberto Stenglein ◽  
María Inés Dinolfo

Waterlogging stress is one of the abiotic factors which causes damage to crops affecting yield components and grain quality of wheat and barley. On the other hand, Fusarium poae is one of the most common Fusarium species isolated from wheat and barley. The aim of this study was to evaluate the effects of waterlogging and F. poae on disease parameters, yield components and grain quality of durum and bread wheat and barley. The experiment was carried out using pots under greenhouse conditions. Four treatments were applied: control/control (W0F0), control/F. poae (W0F1), waterlogging/control (W1F0) and waterlogging/F. poae (W1F1). The results showed that incidence, severity and FHB index of F. poae were higher in W0F1 compared to W1F1 suggesting that waterlogging treatment would be generating no favorable conditions for fungal growth. Therefore, yield components and grain composition and quality were significantly affected by the Fusarium presence and waterlogging treatment which could induce changes in parameters mainly related to the industrial quality of wheat and barley. These results highlight the behavior of wheat and barley under the combination of abiotic and biotic stress.


Sign in / Sign up

Export Citation Format

Share Document