Driving with a Crt Display

1967 ◽  
Vol 25 (3) ◽  
pp. 899-900 ◽  
Author(s):  
Rudolf G. Mortimer

Ss drove a car using a synthetic display. Lateral position alone was a weak cue for lateral control. The addition of either lateral velocity or peripheral vision cues greatly improved performance.

Author(s):  
Rafael Delpiano

There is growing interest in understanding the lateral dimension of traffic. This trend has been motivated by the detection of phenomena unexplained by traditional models and the emergence of new technologies. Previous attempts to address this dimension have focused on lane-changing and non-lane-based traffic. The literature on vehicles keeping their lanes has generally been limited to simple statistics on vehicle position while models assume vehicles stay perfectly centered. Previously the author developed a two-dimensional traffic model aiming to capture such behavior qualitatively. Still pending is a deeper, more accurate comprehension and modeling of the relationships between variables in both axes. The present paper is based on the Next Generation SIMulation (NGSIM) datasets. It was found that lateral position is highly dependent on the longitudinal position, a phenomenon consistent with data capture from multiple cameras. A methodology is proposed to alleviate this problem. It was also discovered that the standard deviation of lateral velocity grows with longitudinal velocity and that the average lateral position varies with longitudinal velocity by up to 8 cm, possibly reflecting greater caution in overtaking. Random walk models were proposed and calibrated to reproduce some of the characteristics measured. It was determined that drivers’ response is much more sensitive to the lateral velocity than to position. These results provide a basis for further advances in understanding the lateral dimension. It is hoped that such comprehension will facilitate the design of autonomous vehicle algorithms that are friendlier to both passengers and the occupants of surrounding vehicles.


Author(s):  
Sonia Ortiz-Peregrina ◽  
Oscar Oviedo-Trespalacios ◽  
Carolina Ortiz ◽  
Rosario G. Anera

Objective This study analyzed the self-regulation behaviors of drivers under the influence of cannabis and its relationship with road complexity and some driver traits, including visual deterioration. Background Cannabis is the illicit drug most often detected in drivers; its use results in significant negative effects in terms of visual function. Self-regulation behaviors involve the mechanisms used by drivers to maintain or reduce the risk resulting from different circumstances or the driving environment. Methods Thirty-one young, occasional cannabis users were assessed both in a baseline session and after smoking cannabis. We evaluated the visual function (visual acuity and contrast sensitivity) and driver self-regulation variables of both longitudinal and lateral control as the speed adaptation and standard deviation of lateral position (SDLP). Results Visual function was significantly impaired after cannabis use. Recreational cannabis use did not result in self-regulation, although some road features such as curved roads did determine self-regulation. Male participants adopted mean faster driving speeds with respect to the speed limit. Driver age also determined better lateral control with lower SDLPs. In addition, visual impairment resulting from cannabis use (contrast sensitivity) was linked with self-regulation by changes in longitudinal and lateral control. Conclusion Contrast sensitivity could be a good indicator of individual visual status to help determine how drivers self-regulate their driving both in normal conditions and while under the influence of cannabis. Application The findings provide new insights about driver self-regulation under cannabis effects and are useful for policy making and awareness campaigns.


Perception ◽  
1997 ◽  
Vol 26 (12) ◽  
pp. 1555-1570 ◽  
Author(s):  
Valerie Brown ◽  
Dale Huey ◽  
John M Findlay

We examined whether faces can produce a ‘pop-out’ effect in visual search tasks. In the first experiment, subjects' eye movements and search latencies were measured while they viewed a display containing a target face amidst distractors. Targets were upright or inverted faces presented with seven others of the opposite polarity as an ‘around-the-clock’ display. Face images were either photographic or ‘feature only’, with the outline removed. Naive subjects were poor at locating an upright face from an array of inverted faces, but performance improved with practice. In the second experiment, we investigated systematically how training improved performance. Prior to testing, subjects were practised on locating either upright or inverted faces. All subjects benefited from training. Subjects practised on upright faces were faster and more accurate at locating upright target faces than inverted. Subjects practised on inverted faces showed no difference between upright and inverted targets. In the third experiment, faces with ‘jumbled’ features were used as distractors, and this resulted in the same pattern of findings. We conclude that there is no direct rapid ‘pop-out’ effect for faces. However, the findings demonstrate that, in peripheral vision, upright faces show a processing advantage over inverted faces.


2021 ◽  
Author(s):  
Shakir Mahmud ◽  
Babak Safaei

Research was conducted at a freeway exit ramp with significant horizontal curvature to evaluate the effectiveness of dynamic speed feedback signs (DSFS) as a speed reduction countermeasure. Several aspects of the DSFS were evaluated, including display size, border type, lateral installation position, and vehicle detection range. Three different full-matrix DSFS were utilized, which included: 15-inch display panel with yellow border, 18-inch display panel with yellow border, and 18-inch display panel with no border. Each sign was individually installed and tested at identical locations near the start of the exit ramp curve, in both the traditional right-side-mount and an alternative forward-mount within the exit gore area. Speed data and message activation location were collected for vehicles approaching and entering into the curve across the various sign test conditions. Overall, the presence of a DSFS positioned near the start of the curve resulted in curve entry speeds that were, on average, 3.5 mph lower than without a DSFS present at the site. The lowest curve entry speeds were observed for cases where the message activated when vehicles were within 250 to 400 ft of the curve. Interestingly, earlier message activation did not contribute to further speed reductions, although later activation substantially diminished the speed reduction effects. Regarding DSFS lateral position, both the side-mounted and forward-mounted DSFS installations resulted in similar curve entry speeds. Furthermore, there were no discernable differences in curve entry speeds between the 15-inch and 18-inch display panels, although the inclusion of a yellow sign border improved performance.


Author(s):  
Giovanni Cherubini ◽  
Angeliki Pantazi ◽  
Jens Jelitto

The potential for significant capacity and performance improvements in tape storage systems appears to be substantial [1],[2]. Advances in several areas, however, are necessary to foster increases in linear and track densities and consequently achieve higher cartridge capacities and improved performance [3],[4]. Reliable and precise tape transport and track-following servomechanisms are of fundamental importance to guarantee best read-channel performance on all parallel data channels during tape operation. In particular, tight control of tension and potentially of tape-dimensional stability (TDS) variations will be necessary for moving to thinner tape material, which in turn will enable an increase in volumetric density. Figure 1 shows the block diagram of conventional tape transport and track-following servomechanisms in a tape drive [5]. A digital dual servo channel provides estimates of the tape velocity, tape longitudinal position, and head lateral position, which are derived from signals read from dedicated servo bands [6]. Hall sensors provide tape velocity information from the individual reels, which typically is used in the absence of a valid velocity estimate from the servo channel. One of the main impairments affecting the performance of tape drives is the variation of tape tension [7],[8], which may be induced by, e.g., reel eccentricities.


2007 ◽  
Vol 40 (7) ◽  
pp. 37-42 ◽  
Author(s):  
R. Samar ◽  
Shakil Ahmed ◽  
Faisal Aftab

Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. S105-S112 ◽  
Author(s):  
Saleh M. Al-Saleh ◽  
Gary F. Margrave ◽  
Sam H. Gray

Downward-continuation migration algorithms are powerful tools for imaging complicated subsurface structures. However, they usually assume that extrapolation proceeds from a flat surface, whereas most land surveys are acquired over irregular surfaces. Our method downward continues data directly from topography using a recursive space-frequency explicit wavefield-extrapolation method. The algorithm typically handles strong lateral velocity variations by using the velocity value at each spatial position to build the wavefield extrapolator in which the depth step usually is kept fixed. To accommodate topographic variations, we build space-frequency wavefield extrapolators with laterally variable depth steps (LVDS). At each spatial location, the difference between topography and extrapolation depth is used to determine the depth step. We use the velocity and topographic values at each spatial lateral position to build extrapolators. The LVDS approach does not add more data nor does it require preprocessing prior to extrapolation. We implemented the LVDS method and applied it to a source profile prestack migration technique. We also implemented the previously developed zero-velocity layer approach to use for comparison. For both algorithms, we modeled the acoustic source as an approximate free-space Green’s function, not as a simple extrapolated spatial impulse. Tests on a synthetic data set modeled from rough topography and comparisons with the zero-velocity layer approach confirm the method’s effectiveness in imaging shallow and deep structures beneath rugged topography.


Author(s):  
K.-H. Herrmann ◽  
E. Reuber ◽  
P. Schiske

Aposteriori deblurring of high resolution electron micrographs of weak phase objects can be performed by holographic filters [1,2] which are arranged in the Fourier domain of a light-optical reconstruction set-up. According to the diffraction efficiency and the lateral position of the grating structure, the filters permit adjustment of the amplitudes and phases of the spatial frequencies in the image which is obtained in the first diffraction order.In the case of bright field imaging with axial illumination, the Contrast Transfer Functions (CTF) are oscillating, but real. For different imageforming conditions and several signal-to-noise ratios an extensive set of Wiener-filters should be available. A simple method of producing such filters by only photographic and mechanical means will be described here.A transparent master grating with 6.25 lines/mm and 160 mm diameter was produced by a high precision computer plotter. It is photographed through a rotating mask, plotted by a standard plotter.


Author(s):  
Gertrude. F. Rempfer

Optimum performance in electron and ion imaging instruments, such as electron microscopes and probe-forming instruments, in most cases depends on a compromise either between imaging errors due to spherical and chromatic aberrations and the diffraction error or between the imaging errors and the current in the image. These compromises result in the use of very small angular apertures. Reducing the spherical and chromatic aberration coefficients would permit the use of larger apertures with resulting improved performance, granted that other problems such as incorrect operation of the instrument or spurious disturbances do not interfere. One approach to correcting aberrations which has been investigated extensively is through the use of multipole electric and magnetic fields. Another approach involves the use of foil windows. However, a practical system for correcting spherical and chromatic aberration is not yet available.Our approach to correction of spherical and chromatic aberration makes use of an electrostatic electron mirror. Early studies of the properties of electron mirrors were done by Recknagel. More recently my colleagues and I have studied the properties of the hyperbolic electron mirror as a function of the ratio of accelerating voltage to mirror voltage. The spherical and chromatic aberration coefficients of the mirror are of opposite sign (overcorrected) from those of electron lenses (undercorrected). This important property invites one to find a way to incorporate a correcting mirror in an electron microscope. Unfortunately, the parts of the beam heading toward and away from the mirror must be separated. A transverse magnetic field can separate the beams, but in general the deflection aberrations degrade the image. The key to avoiding the detrimental effects of deflection aberrations is to have deflections take place at image planes. Our separating system is shown in Fig. 1. Deflections take place at the separating magnet and also at two additional magnetic deflectors. The uncorrected magnified image formed by the objective lens is focused in the first deflector, and relay lenses transfer the image to the separating magnet. The interface lens and the hyperbolic mirror acting in zoom fashion return the corrected image to the separating magnet, and the second set of relay lenses transfers the image to the final deflector, where the beam is deflected onto the projection axis.


Author(s):  
Thomas E. Moriarty ◽  
Andrew M. Junker ◽  
Don R. Price

Sign in / Sign up

Export Citation Format

Share Document