Effects of Retinal Degeneration and Brain Size upon Spatial Reversal Learning in Mice

1973 ◽  
Vol 36 (3) ◽  
pp. 947-950 ◽  
Author(s):  
John L. Fuller ◽  
Susan Brady-Wood ◽  
Merrill F. Elias

Mice selected for high brain weight were superior to unselected controls in initial and reversal learning of a spatial discrimination in a water T-maze. Mice selected for low brain weight were superior to controls on initial learning but not on reversals. The presence of retinal degeneration in the low line and in some controls was not an important factor in performance in this maze.

1969 ◽  
Vol 28 (3) ◽  
pp. 707-712 ◽  
Author(s):  
Merrill F. Elias

Spatial reversal learning was explored for mice genetically selected for high brain weight and unselected control mice with lower brain weights. Original learning and two reversals were presented in a water maze. There were no differences for original learning, but the high brain-weight mice were superior to the unselected controls for both reversals. Since all controls had lower brain weights than the highs, it was concluded that these data support a positive relation between brain size and spatial reversal learning.


1970 ◽  
Vol 30 (1) ◽  
pp. 239-245 ◽  
Author(s):  
Merrill F. Elias

Spatial discrimination reversal learning was explored for mice genetically selected for high brain weight and unselected controls with lower brain weights. Control-line Ss escaped from a water maze more rapidly, but high-line Ss made fewer errors and took less trials to reach criterion on the first reversal. Control-line Ss were unable to complete more than 1 reversal, while high-line Ss all completed at least 7 reversals. This positive relation between reversal learning and brain size is consistent with comparisons among species and experiments manipulating brain size by means of drugs or surgery.


1980 ◽  
Vol 238 (1) ◽  
pp. R76-R81 ◽  
Author(s):  
H. F. Cserr ◽  
M. Bundgaard ◽  
J. K. Ashby ◽  
M. Murray

The size of choroid plexuses and cerebral ventricles relative to brain varies widely among vertebrates. The functional significance of this variability has attracted little attention since Herrick's original proposal that large choroid plexuses might enhance oxygen delivery to the brain and therefore be of adaptive value in the transition of vertebrates from water to air breathing. We compared choroid plexus and brain weight or ventricular and brain volume in 40 species from nine vertebrate groups. Both choroid plexus weight and ventricular volume were unrelated to brain size. Plexus weight ranged from 0 to 5.2% of brain weight and ventricular volume from 0.9 to 132% of brain volume. Amid this diversity the dipnoans, chondrosteans, holosteans, amphibians, and crossopterygian examined in this study are exceptional in uniformly having large plexuses. The adaptive significance of large choroid plexuses may lie in the presence of specific homeostatic mechanisms and their role in the response to the increases in PCO2 that accompany the transition to air breathing.


1966 ◽  
Vol 19 (3) ◽  
pp. 675-681 ◽  
Author(s):  
Cynthia Wimer ◽  
Lee Prater

Learning ability, exploratory behavior, and emotionality were measured in mice genetically selected for high and low total brain weight. The high selection lines scored significantly higher than the low lines in locomotor activity in the open field and discrimination learning performance in a water maze, and these findings were supported by correlations between brain weight and behavioral scores within unselected control lines. There is some evidence that these behavioral differences are associated with general changes in brain size produced by genetic selection.


2017 ◽  
Vol 61 (4) ◽  
pp. 5-11 ◽  
Author(s):  
C. S. Ibe ◽  
S. O. Salami ◽  
N. Wanmi

Abstract As a sequel to the current advancement in ethology, this study was designed to provide information on the brain size of the African grasscutter at specific postnatal periods and to extrapolate these findings to the behaviour of the rodent in its natural habitat. Brain samples were extracted from African grasscutter neonates on postnatal day 6, juveniles on postnatal day 72 and adults on postnatal day 450 by basic neuro-anatomical techniques. The weight, volume and dimensions of the brain samples were determined in absolute and relative terms. Their encephalisation quotient was also computed. There was a very strong positive correlation between nose-rump length and brain length in the neonates. The relative brain weight of neonates, juveniles and adults were 3.84 ± 0.12 %, 2.49 ± 0.07 % and 0.44 ± 0.03 %, respectively. The differences were significant (P < 0.05). The encephalisation quotient of juveniles was 1.62 ± 0.03 while that of the adult was 0.49 ± 0.02. The difference was significant (P < 0.05). The results were extrapolated to the animal’s cognitive ability, and compared with other rodents. It was concluded that the juvenile African grasscutter may have higher cognitive ability than the adult rodent, thus, juveniles should be preferred in physiological studies of memory and cognition.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Disha Shah ◽  
Amira Latif-Hernandez ◽  
Bart De Strooper ◽  
Takashi Saito ◽  
Takaomi Saido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document