The Structure of Rejection: Implications of Sociometric Theory for Larger Groups

1994 ◽  
Vol 79 (2) ◽  
pp. 835-842 ◽  
Author(s):  
Donal E. Muir

Established principles governing acceptance and rejection in dyads and triads are extended to larger groups by analyzing them as made up of such elements. In this larger-group context, a change in any dyad has direct implications for all triads involving that dyad and indirect implications for all triads containing any of the other dyads of those triads. Consequently, a change in the relationship between two individuals can produce effects cascading through the larger group. Analysis based on Monte Carlo simulation indicates that larger groups are more likely to attain sociometric stability when a preponderance of members are rejected, unless structured to encourage mutual acceptance.

2008 ◽  
Vol 23 (26) ◽  
pp. 4337-4343 ◽  
Author(s):  
FENG-GE TIAN ◽  
GANG CHEN ◽  
HUI-LING WEI

The hardness properties of quark- and gluon-jets produced by different flavor quarks are compared in 3-jet events of e+e- collision generated with Monte Carlo Simulation Jetset 7.4 generator at [Formula: see text]. The 3-jet events are obtained using the Durham algorithm and the quark- and gluon-jets are identified by angular-method. The average values of transverse momentum 〈pt〉, multiplicity 〈N〉 and rapidity 〈y〉 versus hardness for quark- and gluon-jets of different flavors are compared. It turns out that the distributions of 〈pt〉, 〈N〉 and 〈y〉 versus hardness of quark-jets are different to their flavors, while those of the gluon-jets are insensitive to the flavors. On the other hand, the 〈pt〉 and 〈N〉 of quark- and gluon-jets are strong positive correlated with hardness, but the 〈y〉 of those are negatively correlated with hardness.


2016 ◽  
Vol 15 (3) ◽  
pp. 290-295
Author(s):  
Chafika Belamri ◽  
Anis Samy Amine Dib ◽  
Ahmed H. Belbachir

AbstractIntroductionIn recent years, there has been a spectacular development in nanomedicine field with new nanoparticles for diagnosis and cancer therapy. Although most researchers have been always interested in gold nanoparticles (GNPs)Materials and methodsIn the present work we present a comparison between the use of bio-nanomaterials in proton therapy.ConclusionConsequently, our results show that platinum nanoparticles (PtNPs) present an interesting advantages comparing with GNPs and silver nanoparticles. On the other hand, the use of PtNPs facilitates in a considerable way the proton therapy.


Author(s):  
Kuilin Zhang ◽  
Hani S. Mahmassani ◽  
Chung-Cheng Lu

This study presents a time-dependent stochastic user equilibrium (TDSUE) traffic assignment model within a probit-based path choice decision framework that explicitly takes into account temporal and spatial correlation (traveler interactions) in travel disutilities across a set of paths. The TDSUE problem, which aims to find time-dependent SUE path flows, is formulated as a fixed-point problem and solved by a simulation-based method of successive averages algorithm. A mesoscopic traffic simulator is employed to determine (experienced) time-dependent travel disutilities. A time-dependent shortest-path algorithm is applied to generate new paths and augment a grand path set. Two vehicle-based implementation techniques are proposed and compared in order to show their impact on solution quality and computational efficiency. One uses the classical Monte Carlo simulation approach to explicitly compute path choice probabilities, and the other determines probabilities by sampling vehicles’ path travel costs from an assumed perception error distribution (also using a Monte Carlo simulation process). Moreover, two types of variance-covariance error structures are discussed: one considers temporal and spatial path choice correlation (due to path overlapping) in terms of aggregated path travel times, and the other uses experienced (or empirical) path travel times from a sample of individual vehicle trajectories. A set of numerical experiments are conducted to investigate the convergence pattern of the solution algorithms and to examine the impact of temporal and spatial correlation on path choice behavior.


2021 ◽  
Author(s):  
◽  
Leila Rajabibonab

<p>The simulation of adsorption processes on a heterogeneous crystal surface is the main interest of this thesis. Two applications of this event have been developed with Kinetic Monte Carlo simulation. One is how to control the crystal growth by macromolecules and the other is how to measure the effective rate of interactions near a crystal surface. The first part of this thesis, considers the effective rate of catalytic conversion on a heterogeneous catalytic surface. We assume the crystal surface has two types of active site, one is neutral and the other one is highly active. We compared our result from simulation with the analytical method that is given by the homogenization theory. Our result revealed the importance of patterns of surface energies and the size of them on reaction rate.  In the second project we consider the adsorption of a homopolymer chain on a crystal surface with two types of surface energies in order to limit the growth of one site and let the other sites grow more. We developed a new Kinetic Monte Carlo simulation method in this part, which was also applied to block copolymer chains that are more complex than a homo-polymer chain. Using this method four important phases of the polymer chains at high temperatures and also the free energies of the system across different patterns of active sites have been found. We tested different types of co-polymers to find the most differentiative block copolymer for controlling the crystal growth.</p>


2008 ◽  
Vol 73 (4) ◽  
pp. 439-458 ◽  
Author(s):  
Peter Košovan ◽  
Zuzana Limpouchová ◽  
Karel Procházka

In this work we study the effect of mobility of charges in annealed polyelectrolytes on their conformational behavior in poor solvents. A combination of molecular dynamics and Monte Carlo simulation techniques was used to take the dissociation into account. We investigated the relation between the conformation of the polyelectrolyte and the distribution of charges along the chain. The results suggest that in sufficiently poor solvents the local degree of charging differs significantly from the average. When a pearl-necklace conformation is formed, the degree of charging of the pearls is significantly lower than that of the strings. The redistribution of charges stabilizes the pearl-necklace conformation and enables the formation of asymmetric conformations with a single pearl at one chain end and a string at the other end.


2019 ◽  
Vol 32 (5) ◽  
pp. e100148
Author(s):  
Kun Yang ◽  
Justin Tu ◽  
Tian Chen

Linear regression is widely used in biomedical and psychosocial research. A critical assumption that is often overlooked is homoscedasticity. Unlike normality, the other assumption on data distribution, homoscedasticity is often taken for granted when fitting linear regression models. However, contrary to popular belief, this assumption actually has a bigger impact on validity of linear regression results than normality. In this report, we use Monte Carlo simulation studies to investigate and compare their effects on validity of inference.


2010 ◽  
Vol 23 (2) ◽  
pp. 33-52 ◽  
Author(s):  
Sanjay Goel ◽  
Eitel J.M. Lauría

In this paper, the authors present a quantitative model for estimating security risk exposure for a firm. The model includes a formulation for the optimization of controls as well as determining sensitivity of the exposure of assets to different threats. The model uses a series of matrices to organize the data as groups of assets, vulnerabilities, threats, and controls. The matrices are then linked such that data is aggregated in each matrix and cascaded across the other matrices. The computations are reversible and transparent allowing analysts to answer what-if questions on the data. The exposure formulation is based on the Annualized Loss Expectancy (ALE) model, and uncertainties in the data are captured via Monte Carlo simulation. A mock case study based on a government agency is used to illustrate this methodology.


Author(s):  
Jakub Valihrach ◽  
Petr Konečný

Exit Condition for Probabilistic Assessment Using Monte Carlo Method This paper introduces a condition used to exit a probabilistic assessment using the Monte Carlo simulation, and to evaluate it with regard to the relationship between the computed estimate of the probability of failure and the target design probability. The estimation of probability of failure is treated as a random variable, considering its variance that is dependent on the number of performed Monte Carlo simulation steps. After theoretical derivation of the decision condition, it is tested numerically with regard to its accuracy and computational efficiency. The condition is suitable for optimization design using the Monte Carlo method.


2007 ◽  
Vol 40 (3) ◽  
pp. 323-343 ◽  
Author(s):  
Hans-Peter Waldhoff

At first, Elias' approach to psychoanalysis and group analysis was emphatically thought out and scientific, even when he submitted to experiencing it personally. In this article, a number of hitherto unknown documents will be discussed which reveal Elias as being in the triangle between psychoanalysis, group analysis and sociological research, but above all in a bipolar tension field which he describes in numerous variations and which can be characterized as moving between an intellectually distanced, scientifically disciplined procedure appealing to the conscious ego on the one hand, and a more strongly emotionally involved technique such as free group association, which takes the unconscious into account, on the other. The second part of this article will focus on the development and dynamics of the first Congress Group (the `C-Group') of the Group-Analytic Society, focusing on the relationship between Foulkes and Elias.


Sign in / Sign up

Export Citation Format

Share Document