scholarly journals Initiation and Propagation of Low-Cycle Fatigue Cracks in Fe-Ni-C Martensitic Steel

1973 ◽  
Vol 22 (233) ◽  
pp. 140-145
Author(s):  
Shin-ichiro KUMAGAI
2018 ◽  
Vol 774 ◽  
pp. 96-100 ◽  
Author(s):  
Tamaz Eterashvili ◽  
Temur Dzigrashvili ◽  
M. Vardosanidze

Distribution of fatigue cracks in chromium martensitic steel after low cycle fatigue (LCF) tests at room temperature has been studied using SEM, and the experimental evidences of localized plastic flow (LPF) are presented. The influence of the location of LPF and the microstructure elements on the trajectory and growth of microcracks is also considered. The dimensions of plastic zones ahead of macrocrack tip as well as at its edges were measured in the process of crack propagation inside of the sample. The processes occurring in plastic zone, particularly ahead of macrocrack tip, were analyzed. Distribution, orientation and the reasons of slip bands’ formation as well as the microstructure elements at which they were nucleated have been studied. The impact of the slip bands’ orientation on the process of macrocrack growth was also analyzed. In addition the interactions of a crack with the boundaries of former austenite grains, martensitic packets, martensitic laths, slip bands and precipitates have been discussed.


1974 ◽  
Vol 188 (1) ◽  
pp. 321-328 ◽  
Author(s):  
W. J. Evans ◽  
G. P. Tilly

The low-cycle fatigue characteristics of an 11 per cent chromium steel, two nickel alloys and two titanium alloys have been studied in the range 20° to 500°C. For repeated-tension stress tests on all the materials, there was a sharp break in the stress-endurance curve between 103 and 104 cycles. The high stress failures were attributed to cyclic creep contributing to the development of internal cavities. At lower stresses, failures occurred through the growth of fatigue cracks initiated at the material surface. The whole fatigue curve could be represented by an expression developed from linear damage assumptions. Data for different temperatures and types of stress concentration were correlated by expressing stress as a fraction of the static strength. Repeated-tensile strain cycling data were represented on a stress-endurance diagram and it was shown that they correlated with push-pull stress cycles at high stresses and repeated-tension at low stresses. In general, the compressive phase tended to accentuate cyclic creep so that ductile failures occurred at proportionally lower stresses. Changes in frequency from 1 to 100 cycle/min were shown to have no significant effect on low-cycle fatigue behaviour.


2007 ◽  
Vol 345-346 ◽  
pp. 343-346 ◽  
Author(s):  
M.C. Marinelli ◽  
Suzanne Degallaix ◽  
I. Alvarez-Armas

In this work, the formation of fatigue cracks is considered as a nucleation process due to the development of a characteristic microstructure formed just beneath the specimen surface. Strain controlled cyclic tests were carried out at room temperature at total strain ranges εt = 0.8 and 1.2% in flat specimens of SAF 2507 Duplex Stainless Steel (DSS). The results show that for this DSS, at εt = 0.8%, the correlation between phases (Kurdjumov-Sacks crystallographic relation) plays an important role in the formation of microcracks. On the other hand, at εt = 1.2%, microcracks initiate in the ferritic phase and the K-S relation does not seem to affect the formation of the cracks.


2010 ◽  
Vol 47 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Shuhei NOGAMI ◽  
Yuki SATO ◽  
Atsushi TANAKA ◽  
Akira HASEGAWA ◽  
Arata NISHIMURA ◽  
...  

2010 ◽  
Vol 146-147 ◽  
pp. 1086-1089 ◽  
Author(s):  
Hong Tao Zhang ◽  
Xiao Xiang Xue ◽  
Yan Zheng ◽  
Peng Feng

This paper provides a new method to repair the steel pipe with fatigue cracks by using carbon fiber reinforced polymer (CFRP). Cracks may arise in Pressure pipeline in service because of low cycle fatigue. Crack defect is the biggest problem, because crack will gradually propagate and seriously threaten the safe operation of pipeline. This paper provides a repair and calculation method for pressure pipeline with fatigue cracks, and some specific engineering cases are given based on this method.


Sign in / Sign up

Export Citation Format

Share Document