scholarly journals Effect of Specimen Hardness and Shot Particle Hardness on Residual Stress and Fatigue Properties of SCM435H Steel Performed by Fine Particle Peening

2011 ◽  
Vol 60 (6) ◽  
pp. 547-553 ◽  
Author(s):  
Shoichi KIKUCHI ◽  
Yo HIROTA ◽  
Jun KOMOTORI
2014 ◽  
Vol 891-892 ◽  
pp. 1482-1487
Author(s):  
Kazue Murai ◽  
Ryota Toyama ◽  
Jun Komotori ◽  
Kengo Fukazawa ◽  
Yoshitaka Misaka ◽  
...  

To improve the fatigue properties of structural steel, a novel surface modification process which combines high-frequency induction heating (IH) with fine particle peening (FPP) was developed. IH-FPP treatment was performed on the surface of structural steel specimens (0.45%C) at temperatures from 600 to 750 °C, with peening times of 60 and 120 s. To determine the characteristics of the treated surfaces, the microstructure was observed using an optical microscope and a scanning electron microscope. Vickers hardness and residual stress distributions were also measured. The characteristics of fine-grained microstructures were examined by electron backscatter diffraction. Furthermore, in order to investigate the effect of the grain refinement achieved by IH-FPP treatment, rotational bending fatigue tests were performed on treated specimens. Results showed that IH-FPP treatment created fine-grained microstructures beneath the surfaces of steel samples. The average ferrite grain size was 4.06 μm for a treatment temperature of 700 °C, and finally 0.76 μm for 600 °C . This was due to dynamic recrystallization in the processed region. IH-FPP treated specimens exhibited a higher fatigue strength than untreated specimens. As almost no compressive residual stress was measured in the treated or untreated specimens, the increase in fatigue strength resulting from IH-FPP treatment was due solely to grain refinement.


2007 ◽  
Vol 353-358 ◽  
pp. 215-218
Author(s):  
Shoichi Kikuchi ◽  
Jun Komotori ◽  
Yutaka Kameyama ◽  
Kengo Fukazawa

In order to clarify the effects of the hybrid surface modification process; a combination of Fine Particle Bombardment (FPB) treatment and nitriding, on the fatigue properties of AISI 4135 steel (stress concentration factor: α=2.36), high cycle fatigue tests were carried out with a rotational bending machine at room temperature. Observations of fracture surfaces and measurements of hardness and residual stress distributions were carried out to investigate the fracture mechanism and fatigue strength. It was revealed that treating process sequence did affect residual stress distributions. Compressive residual stress generated at the surface of FPB treated specimen after nitriding was higher than that of the one FPB treated before nitriding. It was clarified that the higher the specimen hardness was, the higher compressive residual stress was generated at the surface. Therefore, FPB treatment after nitriding increased the fatigue strength of steel.


2018 ◽  
Vol 2018 (0) ◽  
pp. OS0827
Author(s):  
Motoaki HAYAMA ◽  
Shogo TAKESUE ◽  
Masahiro TSUKAHARA ◽  
Yoshitaka MISAKA ◽  
Jun KOMOTORI

2011 ◽  
Vol 295-297 ◽  
pp. 2227-2230
Author(s):  
Cong Ling Zhou

In this study, fatigue tests have been performed using two kinds of specimens made of 25 steel. One is pre-strained specimen with pre-strain ratio changing from 2% to 8% by tension, the other is roller worked with deformation of 0.5 mm and 1.0 mm in diameter direction. In the case of pre-strained specimen, the fatigue limit increases according to increase of tensile pre-strain, the fatigue limit of 8% pre-strained specimen is 25% higher than that of non-pre-strained one; in the case of roller worked specimen, the fatigue limit of R05 and R10 is 126% and 143% to that of non-roller worked specimen, respectively. These remarkable improvements of fatigue limit would be caused by the existence of compressive residual stress, work-hardening and the elongated microscopic structures.


2004 ◽  
Vol 843 ◽  
Author(s):  
Hideo Mano ◽  
Kondo Satoru ◽  
Akihito Matsumuro ◽  
Toru Imura

ABSTRACTThe shot peening process is known to produce a hard layer, known as the white layer” on the surface of coil springs. However, little is known about the fatigue properties of this white-layer.In this study, coil springs with a white-layer were manufactured. The surface of these springs was then examined using micro Vickers hardness, FE-SEM etc. to test fatigue strength of the springs.From the results obtained, a microstructure of the white-layer with grain size of 50–100 nm was observed, with a Vickers hardness rating of 8–10 GPa.Tow category springs were manufactured utilizing a double-peening process. These springs had the same residual stress destruction and surface roughness. Only one difference was observed: one spring had a nanocrystalline layer on the surface, while the other did not. The results of the fatigue test realized an increase in the fatigue life of the nanocrystalline surface layer by 9%.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7324
Author(s):  
Thomas Wild ◽  
Timo Platt ◽  
Dirk Biermann ◽  
Marion Merklein

Hot work tool steels (HWS) are widely used for high performance components as dies and molds in hot forging processes, where extreme process-related mechanical and thermal loads limit tool life. With the functionalizing and modification of tool surfaces with tailored surfaces, a promising approach is given to provide material flow control resulting in the efficient die filling of cavities while reducing the process forces. In terms of fatigue properties, the influence of surface modifications on surface integrity is insufficiently studied. Therefore, the potential of the machining processes of high-feed milling, micromilling and grinding with regard to the implications on the fatigue strength of components made of HWS (AISI H11) hardened to 50 ± 1 HRC was investigated. For this purpose, the machined surfaces were characterized in terms of surface topography and residual stress state to determine the surface integrity. In order to analyze the resulting fatigue behavior as a result of the machining processes, a rotating bending test was performed. The fracture surfaces were investigated using fractographic analysis to define the initiation area and to identify the source of failure. The investigations showed a significant influence of the machining-induced surface integrity and, in particular, the induced residual stress state on the fatigue properties of components made of HWS.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 619 ◽  
Author(s):  
Ján Lago ◽  
Libor Trško ◽  
Michal Jambor ◽  
František Nový ◽  
Otakar Bokůvka ◽  
...  

Ultrasonic impact peening was applied on welded joints manufactured from Strenx 700 MC high strength low alloy steel with the aim to improve the fatigue properties. Three different surface treatment parameters were tested, which resulted in transformation of the near-surface tensile residual stresses in the weld metal and heat affected zone to compressive residual stress field, while maximal values from −400 MPa up to −800 MPa were reached. The highest fatigue life improvement was reached by the double peening with the 85 N contact force, where the fatigue limit for N = 108 cycles increased from 370 MPa to 410 MPa.


2012 ◽  
Vol 503-504 ◽  
pp. 382-389 ◽  
Author(s):  
Dong Xing Du ◽  
Dao Xin Liu ◽  
Yu Feng Sun ◽  
Jin Gang Tang ◽  
Xiao Hua Zhang

In this paper, the influence of different machining methods (including rough turning, finish turning, and longitudinal polishing after finish turning) on rotating bending fatigue properties of TC21 which belonged to a new ultra high strength titanium alloy was studied. The influence of machining methods on surface integrity of TC21 titanium alloy was measured by using surface profile measurement, scanning electron microscopy, metallography microscope, micro-hardness instrument and X-ray diffraction residual stress analyzer. And fatigue fractography of specimens was further investigated. Then the mechanism of fatigue resistance which was affected by machining surface integrity was discussed. The results indicated that the fatigue life of finish turning and longitudinal polishing after finish turning was increased 3.96 times and 17.34 times compared with rough turning, respectively. The machining surface integrity had important influence on fatigue property of TC21 titanium alloy, which caused by the differences of surface roughness and texture as the dominant factors, and then the variation in surface micro-hardness, metallographic microstructure and the surface residual stress were not the main factors on three above-mentioned machining methods. By using longitudinal polishing after finish turning processing method for preparation of TC21 titanium alloy parts could ensure good surface integrity and excellent fatigue performance.


Sign in / Sign up

Export Citation Format

Share Document