scholarly journals Effect of Fiber Content of Injection Material on Mechanical Properties of Melted Thermoplastic-Resin Transfer Molded Products

2021 ◽  
Vol 70 (10) ◽  
pp. 766-772
Author(s):  
Kazuto TANAKA ◽  
Momoka ASANO ◽  
Tsutao KATAYAMA ◽  
Masataka KAWAGUCHI ◽  
Kimitaka WATANABE ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2868 ◽  
Author(s):  
Congze Fan ◽  
Zhongde Shan ◽  
Guisheng Zou ◽  
Li Zhan ◽  
Dongdong Yan

To further improve the mechanical properties of thermoplastic resin in additive manufacturing (AM), this paper presents a novel method to directly and quantitatively place the short fibers (SFs) between two printing process of resin layers. The printed composite parts with SFs between the layers was reinforced. The effects of single-layer fiber content, multi-layer fiber content and the length of fibers on the mechanical properties of printed specimens were studied. The distribution of fibers and quality of interlayer bonding were assessed using mechanical property testing and microstructure examination. The results showed that the tensile strength of the single-layered specimen with 0.5 wt% interlayered SFs increased by 18.82%. However, when the content of SFs continued to increase, the mechanical properties declined because of the increasing interlayered gap and the poor bonding quality. In addition, when the interlayered SFs length was 0.5–1 mm, the best reinforcement was obtained. To improve the interfacial bonding quality between the fiber and the resin, post-treatment and laser-assisted preheating printing was used. This method is effective for the enhancement of the interfacial bonding to obtain better mechanical properties. The research proves that adding SFs by placement can reduce the wear and breakage of the fibers compared to the conventional forming process. Therefore, the precise control of the length and content of SFs was realized in the specimen. In summary, SFs placement combined with post-treatment and laser-assisted preheating is a new method in AM to improve the performance of thermoplastic resin.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1859 ◽  
Author(s):  
Xueni Zhao ◽  
Qingyao Liu ◽  
Jianjun Yang ◽  
Weigang Zhang ◽  
Yao Wang

The effect of fiber content and sintering temperature on sintering behavior and mechanical properties of mullite fibers/hydroxyapatite composites was studied. The composites were fabricated by hydrothermal synthesis and pressureless sintering. The amount of fibers was varied from 5 wt % to 15 wt % through hydrothermal synthesis, mullite fibers and hydroxyapatite composite powders were subsequently sintered at temperatures of 1150, 1250, and 1350 °C. The composites presented a more perturbed structure by increasing fiber content. Moreover, the composites experienced pore coalescence and exhibited a dense microstructure at elevated temperature. X-ray diffraction indicated that the composites underwent various chemical reactions and generated silicate glasses. The generation of silicate glasses increased the driving force of particle rearrangement and decreased the number of pores, which promoted densification of the composites. Densification typically leads to increased hardness and bending strength. The study proposes a densification mechanism and opens new insights into the sintering properties of these materials.


2019 ◽  
Vol 168 ◽  
pp. 291-301 ◽  
Author(s):  
Shamsad Ahmad ◽  
Mehboob Rasul ◽  
Saheed Kolawole Adekunle ◽  
Salah U. Al-Dulaijan ◽  
Mohammed Maslehuddin ◽  
...  

2019 ◽  
Vol 15 (5) ◽  
pp. 947-957 ◽  
Author(s):  
Giridharan R. ◽  
Raatan V.S. ◽  
Jenarthanan M.P.

Purpose The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried out as per ASTM standards to find the mechanical properties. Further, fractured surface of the specimen is subjected to morphological study. Design/methodology/approach Composite samples were prepared according to ASTM standards and were subjected to tensile and flexural loads. The fractured surfaces of the specimens were examined directly under scanning electron microscope. Findings From the experiment, it was found that the main factors that influence the properties of composite are fiber length and content. The optimum fiber length and weight ratio are 15 mm and 16 percent, respectively, for bamboo fiber/epoxy composite. Hence, the prediction of optimum fiber length and content becomes important, so that composite can be prepared with best mechanical properties. The investigation revealed the suitability of bamboo fiber as an effective reinforcement in epoxy matrix. Practical implications As bamboo fibers are biodegradable, recyclable, light weight and so on, their applications are numerous. They are widely used in automotive components, aerospace parts, sporting goods and building industry. With this scenario, the obtained result of bamboo fiber reinforced composites is not ignorable and could be of potential use, since it leads to harnessing of available natural fibers and their composites rather than synthetic fibers. Originality/value This work enlists the effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite, which has not been attempted so far.


2020 ◽  
Vol 26 (3) ◽  
pp. 295-299
Author(s):  
Sekar SANJEEVI ◽  
Athijayamani AYYANAR ◽  
Ramanathan KALIMUTHU ◽  
Sidhardhan SUSAIYAPPAN

In this paper, the effects of three different chemical treatments on the mechanical properties of Phenol Formaldehyde (PF) composites reinforced with the Calotropis Gigantea Fibers (CGFs) were investigated based on the fiber content of the fibers. Composites were prepared by the untreated and treated fibers using the hand lay up technique and their mechanical properties were evaluated and compared. The results revealed that the composites show the greater mechanical properties at 40 wt.% for the untreated condition. Composites prepared with alkali treated fibers show the better mechanical properties as compared with the other treated fiber composites.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 205 ◽  
Author(s):  
Aqil M. ALmusawi ◽  
Thulfiqar S. Hussein ◽  
Muhaned A. Shallal

Recent developments in the production of ecologically friendly building composites have led to a renewed interest in the use of vegetable fibers as a reinforcement element. Traditional pure Plaster of Paris (POP) can suffer from the development of micro-cracks due to thermal expansion. Therefore, sisal fiber was studied for its potential as an ecological element to restrict and delay the development of micro-cracks in POP. Different sisal proportions of 0, 2, 4, 6, 8 and 10 wt. % of POP were used to characterize the physical and mechanical properties of POP at the ambient temperature. Then, the effects of temperatures of 25, 100, 200, 300, 400 and 500  were investigated. Results proved that the composite of 10% sisal fiber had the best mechanical properties. Also, when the fiber content was increased, the composite’s performance was enhanced, becoming better able to resist elevated temperatures. However, raising the temperature to 300 or above had a negative effect on the mechanical properties, which were significantly decreased due to the degradation of the sisal fiber. 


2014 ◽  
Vol 27 (2) ◽  
pp. 77-82 ◽  
Author(s):  
H Ahmad ◽  
MA Islam ◽  
MF Uddin

Chopped jute fiber-epoxy composites with varying fiber length (2-12 mm) and mass fraction (0.05-0.35) had been prepared by a heat press unit. The cross-linked product was characterized in terms of specific gravity, thermal conductivity, tensile strength, Young modulus and elongation at break. The transverse thermal conductivities for randomly oriented fibers in the composite were investigated by Lees and Charlton’s method. The tensile strength, Young modulus and elongation at break were investigated by a Universal Tensile Tester. With an increase in the fiber content (irrespective of the fiber length), the thermal conductivity of the composite decreases; the decreasing rate being highest for the fiber length of 2 mm followed by that for the fiber length of 6 and 12 mm. The decreasing rate of the thermal conductivity of the jute-epoxy composite is comparatively higher to that reported in literature for acrylic polymer hemp fiber composite. The tensile strength also decreases with the increase of the fiber content in the composite. The fiber length does not show to have significant effect on the tensile strength of the composite; the variation in strength being masked within experimental error. The Young modulus increases with the increase of fiber content within elastic limit; showing the highest values for the fiber length of 6 mm followed by those for the fiber length of 2 mm and 12 mm. The elongation at break shows slightly increasing trend up to 15% fiber content, but beyond that it decreases drastically. The specific gravity decreases with the increase in the fiber content and thus the recalculated specific tensile strength is found to keep at a stable level of 36MPa up to the fiber content of 20%, and beyond that the specific tensile strength decreases with the increase in the fiber content. It is concluded that jute fiber-epoxy composite could be used as a good heat-insulating material. Further investigation is recommended on the improvement of the thermal insulation keeping the mechanical properties unchanged or even improved. The TGA study is also required to ascertain the field of application of the material. DOI: http://dx.doi.org/10.3329/jce.v27i2.17807 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 2, December 2012: 77-82


Sign in / Sign up

Export Citation Format

Share Document