scholarly journals Evaluation of Coal Fly Ash and Incineration Ash as Raw Material for Zeolite Synthesis.

2001 ◽  
Vol 117 (6) ◽  
pp. 501-505 ◽  
Author(s):  
Norihiro MURAYAMA ◽  
Yousuke YAMAKAWA ◽  
Kazuo OGAWA ◽  
Hideki YAMAMOTO ◽  
Junji SHIBATA
2021 ◽  
Vol 2 (1) ◽  
pp. 53-59
Author(s):  
A. Korpa ◽  
V. Teneqja ◽  
S. Gjyli ◽  
A. Andoni

This paper summarizes the investigation results on the main parameters affecting the synthesis of type X and A zeolites using coal silicious fly ash (FA) as raw material. The synthesis was performed by dissolution of alkali-fused alumino-silicates, followed by hydrothermal treatment. The experimental data confirm that fly ash SiO2/Al2O3 ratio, NaOH/FA ratio, acid treatment of pre-fused fly ash, salinity of solution have a significant effect on type and properties of newly formed zeolites. In summary, the results show that A and X-type zeolite form with FA SiO2/Al2O3 ratio < 1.12 and > 1.86, respectively. Moreover, FA characterized by SiO2/Al2O3 mole ratio of 3.15 is suitable for X-type zeolite synthesis while A-type zeolite does not form without NaAlO2 addition. The crystallization occurs faster at higher temperatures although above 90°C X-type zeolite evolves into more stable phases whereas increasing the crystallization time from 1 to 72 hours, the yield of the synthetic products enhances from 60 to 75%. The use of seawater is responsible for the synthesis of X-type showing both lower purity and specific surface area. However, the synthetic products are characterized by high exchange capacity (> 320 meq/100 g), thus suggesting their successful application as adsorbents and catalysts in different types of wastewater and industrial waste treatments.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3576
Author(s):  
Jan Wrona ◽  
Witold Żukowski ◽  
Dariusz Bradło ◽  
Piotr Czupryński

Aluminosilicate microspheres are a valuable fraction of coal fly ash with diverse applications due to their low density. Currently, there is no efficient and ecologically rational method of cenosphere recovery from fly ash. A combination of dry methods for the recovery of both fine ash particles and aluminosilicate microspheres from coal fly ash is presented. It is comprised of fluidised bed separation followed by screening and pneumatic separation in a free-fall air chamber. Fluidised bed separation was assisted by a mechanical activator to prevent agglomeration. This step reduced the portion of material that required further treatment by 52–55 wt.%, with the recovery of microspheres exceeding 97%. Then, the concentrates were individually subjected to pneumatic separation. The final separation product for the fly ash containing 0.64 wt.% cenospheres was a cenosphere concentrate that constituted about 17 wt.% of the initial fly ash. The recovery of cenospheres was around 81%. Usage of a combination of dry methods allowed for maintaining almost 83 wt.% of the raw material in its dry form. Furthermore, the produced fly ash grain fractions could be used for different industrial purposes.


2018 ◽  
Vol 29 (3) ◽  
pp. 450-456 ◽  
Author(s):  
Tomonori Fukasawa ◽  
Akira Horigome ◽  
Achmad Dwitama Karisma ◽  
Norio Maeda ◽  
An-Ni Huang ◽  
...  

2012 ◽  
Vol 1373 ◽  
Author(s):  
Jorge López-Cuevas ◽  
David Long-González ◽  
Carlos A. Gutiérrez-Chavarría

ABSTRACTCelsian with a chemical composition of Ba0.75Sr0.25Al2Si2O8, is synthesized by using coal fly ash (byproduct of a Mexican coal-burning power plant, composed mainly by SiO2 and Al2O3) as main raw material. The thermal behavior of the synthesized material is evaluated by differential (DTA) and gravimetric (TGA) thermal analyses as well as by heating microscopy; its coefficient of linear thermal expansion (CTE) is also determined. Heating microscopy shows that cylinders of compacted powdered Celsian start sintering at ∼1140 ºC, which is associated with a considerable contraction occurring up to 1500 ºC. The mean CTE value of the material in the temperature range of 30-1100ºC is slightly affected by the synthesis conditions employed. Synthesis at 1400 or 1300 ºC during 10 h, with a pre-calcination step at 900 ºC/5h in both cases, produce mean CTE values of 5.15 x 10-6 and 5.43 x 10-6 ºC-1, respectively. On the other hand, Celsian synthesized at 1400 ºC/10 h, without the pre-calcination step, has a mean CTE value of 5.25 x 10-6 ºC-1. Lastly, the DTA/TGA analysis of the synthesized material shows that a slight weight gain takes place from room temperature to 1100ºC, which is followed by a slight weight loss up to 1300ºC. This is attributed to oxidation and evaporation of some of the impurities present in the material.


2002 ◽  
Vol 77 (3) ◽  
pp. 280-286 ◽  
Author(s):  
Norihiro Murayama ◽  
Hideki Yamamoto ◽  
Junji Shibata

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2399
Author(s):  
Katerina Lazarova ◽  
Silviya Boycheva ◽  
Marina Vasileva ◽  
Denitza Zgureva-Filipova ◽  
Biliana Georgieva ◽  
...  

In this study, thin composite films of a sol–gel Nb2O5 matrix doped with coal fly ash Na-X zeolites were deposited by the spin-coating method. Fly ash of lignite coal collected from the electrostatic precipitators of one of the biggest TPPs in Bulgaria was used as a raw material for obtaining zeolites. Zeolite Na-X was synthesized by ultrasonic-assisted double stage fusion-hydrothermal alkaline conversion of coal fly ash. In order to improve the optical quality and sensing properties of the deposited thin films, synthesized zeolites were wet-milled for 60, 120, and 540 s prior to film deposition. The surface morphology of zeolite powders was studied both by scanning electron microscopy and transmission electron microscopy, while their porosity was investigated by N2-physisorption. Refractive index, extinction coefficient, and thickness of the films were determined through fitting of their reflectance spectra. The sensing ability of thin films towards acetone vapors was tested by measuring the reflectance spectra prior to and during exposure to the analyte, and the change in the reflection coefficient ∆R of the films was calculated. The influence of milling time of zeolites on the sensing and optical properties of the films was assumed and confirmed.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8279
Author(s):  
Silviya Boycheva ◽  
Ivan Marinov ◽  
Denitza Zgureva-Filipova

At present, mitigating carbon emissions from energy production and industrial processes is more relevant than ever to limit climate change. The widespread implementation of carbon capture technologies requires the development of cost-effective and selective adsorbents with high CO2 capture capacity and low thermal recovery. Coal fly ash has been extensively studied as a raw material for the synthesis of low-cost zeolite-like adsorbents for CO2 capture. Laboratory tests for CO2 adsorption onto coal fly ash zeolites (CFAZ) reveal promising results, but detailed computational studies are required to clarify the applicability of these materials as CO2 adsorbents on a pilot and industrial scale. The present study provides results for the validation of a simulation model for the design of adsorption columns for CO2 capture on CFAZ based on the experimental equilibrium and dynamic adsorption on a laboratory scale. The simulations were performed using ProSim DAC dynamic adsorption software to study mass transfer and energy balance in the thermal swing adsorption mode and in the most widely operated adsorption unit configuration.


2003 ◽  
Vol 68 (6) ◽  
pp. 471-478 ◽  
Author(s):  
Dusica Vucinic ◽  
Igor Miljanovic ◽  
Aleksandra Rosic ◽  
Predrag Lazic

Coal fly ash was modified to zeolitic materials by hydrothermal treatment at 90 ?C. The zeolite synthesis was studied as a function of the mole ratio of Na2O/SiO2 in the reaction mixtures. The results showed that NaP1 zeolite is obtained when the Na2O/SiO2 mole ratio was 0.7. Hydroxysodalite is the dominant zeolite phase in modified fly ash treated with a higher Na2O concentration solution (Na2O/SiO2 = 1.3). The IR and XRD methods were used to determine the phases present in the starting sample and in the zeolitic materials.


Sign in / Sign up

Export Citation Format

Share Document