scholarly journals Studies on the CO2 Capture by Coal Fly Ash Zeolites: Process Design and Simulation

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8279
Author(s):  
Silviya Boycheva ◽  
Ivan Marinov ◽  
Denitza Zgureva-Filipova

At present, mitigating carbon emissions from energy production and industrial processes is more relevant than ever to limit climate change. The widespread implementation of carbon capture technologies requires the development of cost-effective and selective adsorbents with high CO2 capture capacity and low thermal recovery. Coal fly ash has been extensively studied as a raw material for the synthesis of low-cost zeolite-like adsorbents for CO2 capture. Laboratory tests for CO2 adsorption onto coal fly ash zeolites (CFAZ) reveal promising results, but detailed computational studies are required to clarify the applicability of these materials as CO2 adsorbents on a pilot and industrial scale. The present study provides results for the validation of a simulation model for the design of adsorption columns for CO2 capture on CFAZ based on the experimental equilibrium and dynamic adsorption on a laboratory scale. The simulations were performed using ProSim DAC dynamic adsorption software to study mass transfer and energy balance in the thermal swing adsorption mode and in the most widely operated adsorption unit configuration.

2019 ◽  
Vol 17 (1) ◽  
pp. 9-13
Author(s):  
А. Zhumagaliyeva ◽  
V. Gargiulo ◽  
F. Raganat ◽  
Ye. Doszhanov ◽  
M. Alfe

Carbon capture and sequestration contains a group of technologies keeping thedifferentiation of CO2 from large industrial and energy related sources, transport toa storage location and long-term isolation from the atmosphere. Previous studiesof CO2 adsorption on low-cost iron metal oxide surfaces strongly encourage thepossible use of metal oxide as sorbents, but the tendency of magnetite particles toagglomerate causes a lowering of CO2 sorption capacity. This work investigates theadsorption behavior of CO2 on composite materials prepared coating a low-costcarbonized rice husk (cRH), commercial carbon black (CB) with magnetite fineparticles. The CO2 capture capacity of composites and based on rice husk materialswas evaluated the basis of the breakthrough times measured at atmosphericpressure and room temperature in a lab-scale fixed bed micro-reactor. To thisaim the reactor has been firstly operated for CO2 adsorption data with obtainedsamples.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2714 ◽  
Author(s):  
Ahmad Assi ◽  
Stefania Federici ◽  
Fabjola Bilo ◽  
Annalisa Zacco ◽  
Laura E. Depero ◽  
...  

Mineral carbonation, involving reactions of alkaline earth oxides with CO2, has received great attention, as a potential carbon dioxide sequestration technology. Indeed, once converted into mineral carbonate, CO2 can be permanently stored in an inert phase. Several studies have been focalized to the utilization of industrial waste as a feedstock and the reuse of some by-products as possible materials for the carbonation reactions. In this work municipal solid waste incineration fly ash and other ashes, as bottom ash, coal fly ash, flue gas desulphurization residues, and silica fume, are stabilized by low-cost technologies. In this context, the CO2 is used as a raw material to favor the chemical stabilization of the wastes, by taking advantage of the pH reduction. Four different stabilization treatments at room temperature are performed and the carbonation reaction evaluated for three months. The crystalline calcium carbonate phase was quantified by the Rietveld analysis of X-ray diffraction (XRD) patterns. Results highlight that the proposed stabilization strategy promotes CO2 sequestration, with the formation of different calcium carbonate phases, depending on the wastes. This new sustainable and promising technology can be an alternative to more onerous mineral carbonation processes for the carbon dioxide sequestration.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3576
Author(s):  
Jan Wrona ◽  
Witold Żukowski ◽  
Dariusz Bradło ◽  
Piotr Czupryński

Aluminosilicate microspheres are a valuable fraction of coal fly ash with diverse applications due to their low density. Currently, there is no efficient and ecologically rational method of cenosphere recovery from fly ash. A combination of dry methods for the recovery of both fine ash particles and aluminosilicate microspheres from coal fly ash is presented. It is comprised of fluidised bed separation followed by screening and pneumatic separation in a free-fall air chamber. Fluidised bed separation was assisted by a mechanical activator to prevent agglomeration. This step reduced the portion of material that required further treatment by 52–55 wt.%, with the recovery of microspheres exceeding 97%. Then, the concentrates were individually subjected to pneumatic separation. The final separation product for the fly ash containing 0.64 wt.% cenospheres was a cenosphere concentrate that constituted about 17 wt.% of the initial fly ash. The recovery of cenospheres was around 81%. Usage of a combination of dry methods allowed for maintaining almost 83 wt.% of the raw material in its dry form. Furthermore, the produced fly ash grain fractions could be used for different industrial purposes.


Author(s):  
Virendra Kumar Yadav ◽  
R Suriyaprabha ◽  
Gajendra Kumar Inwati ◽  
Nitin Gupta ◽  
Bijendra Singh ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lokesh Kumar ◽  
Susanta Kumar Jana

Abstract Sulfur dioxide is considered as an extremely harmful and toxic substance among the air pollutants emitted from the lignite- and other high-sulfur-coal based power plants, old tires processing units, smelters, and many other process industries. Various types of absorbents and desulfurization technologies have been developed and adopted by the industries to reduce the emission rate of SO2 gas. The present paper focuses on the ongoing advances in the development of varieties of regenerative and non-regenerative absorbents viz., Ca-based, Mg-based, Fe-based, Na-based, N2-based, and others along with various FGD technology, viz., wet, dry or semi-dry processes. Additionally, different types of contactors viz., packed column, jet column, spray tower, and slurry bubble columns along with their significant operational and design features have also been discussed. In the existing or newly installed limestone-based FGD plants, an increasing trend of the utilization of newly developed technologies such as limestone forced oxidation (LSFO) and magnesium-enhanced lime (MEL) are being used at an increasing rate. However, the development of low-cost sorbents, particularly suitable solid wastes, for the abatement of SO2 emission needs to be explored sincerely. Many such wastes cause air pollution by way of entrainment of fine particulate matter (PM), groundwater contamination by its leaching, or brings damage to crops due to its spreading onto the cultivation land. One such pollutant is marble waste and in this work, this has been suggested as a suitable substitute to limestone and cost-effective sorbent for the desulfurization of flue gases. The product of this process being sellable in the market or may be used as a raw material in several industries, it can also prove to be an important route of recycling and reuse of one of the air and water-polluting solid wastes.


Author(s):  
Tamilselvi Dananjayan Rushendra Revathy ◽  
Andimuthu Ramachandran ◽  
Kandasamy Palanivelu

2018 ◽  
Vol 154 ◽  
pp. 01037 ◽  
Author(s):  
Agus Taufiq ◽  
Pratikno Hidayat ◽  
Arif Hidayat

The removal of reactive dyes on modified coal fly ash has been investigated during a series of batch adsorption experiments. Physical characteristics of modified coal fly ash was characterized by Brunauer Emmett Teller (BET) surface area analysis, X-ray powder diffraction (XRD), Fourier transform infrared spectrophotometer (FT-IR), and scanning electron microscope (SEM). The effects of operational parameters such as initial dye concentration (50–200 mg/L), solution pH (4–10) and adsorbent dosage (50–200 mg/L) were studied. The adsorption experiments indicated that modified coal fly ash was effective in removing of Remazol Blue. The percentage removal of dyes increased while the modified fly ash dosage increased. The percentage removal of dyes increased with decreased initial concentration of the dye and also increased with amount of adsorbent used. The optimum of removal of dyes was found to be 94% at initial dye concentration 50 g/mL, modified fly ash dosage 250 g/mL, and pH of 2.0.


Sign in / Sign up

Export Citation Format

Share Document