Dolomitization front geometry, fluid flow patterns, and the origin of massive dolomite; the Triassic Latemar buildup, northern Italy

1990 ◽  
Vol 290 (7) ◽  
pp. 741-796 ◽  
Author(s):  
E. N. Wilson ◽  
L. A. Hardie ◽  
O. M. Phillips
2001 ◽  
Vol 106 (B11) ◽  
pp. 26311-26329 ◽  
Author(s):  
Kathryn M. Gillis ◽  
Karlis Muehlenbachs ◽  
Michael Stewart ◽  
Thomas Gleeson ◽  
Jeffrey Karson

Author(s):  
Mei Seen Wo ◽  
R U Gobithaasan ◽  
Kenjiro T Miura ◽  
Kak Choon Loy ◽  
Sadaf Yasmeen ◽  
...  

Abstract The log-aesthetic curve (LAC) is a family of aesthetic curves with linear logarithmic curvature graphs (LCGs). It encompasses well-known aesthetic curves such as clothoid, logarithmic spiral, and circle involute. LAC has been playing a pivotal role in aesthetic design. However, its application for functional design is an uncharted territory, e.g. the relationship between LAC and fluid flow patterns may aid in designing better ship hulls and breakwaters. We address this problem by elucidating the relationship between LAC and flow patterns in terms of streamlines at a steady state. We discussed how LAC pathlines form under the influence of pressure gradient via Euler's equation and how LAC streamlines are formed in a special case. LCG gradient ($\alpha $) for implicit and explicit functions is derived, and it is proven that the LCG gradient at the inflection points of explicit functions is always 0 when its third derivative is nonzero. Due to the complexity of the parametric representation of LAC, it is almost impossible to derive the general representation of LAC streamlines. We address this by analyzing the streamlines formed by incompressible flow around an airfoil-like obstacle generated with LAC having various shapes, ${\alpha _r} = \ \{ { - 20,{\rm{\ }} - 5,{\rm{\ }} - 1,{\rm{\ }} - 0.5,{\rm{\ }} - 0.15,{\rm{\ }}0,{\rm{\ }}1,{\rm{\ }}2,{\rm{\ }}3,{\rm{\ }}4,{\rm{\ }}20} \}$, and simulating the streamlines using FreeFem++ reaching a steady state. We found that the LCG gradient of the resultant streamlines is close to that of a clothoid. When the obstacle shape is almost the same as that of a circle ($\alpha \ = \ 20$), the streamlines adjacent to the obstacles have numerous curvature extrema despite nearing steady state. The flow speed variation is the lowest for $\alpha \ = \ - 1.43$ and gets higher as $\alpha$ is increased or decreased from $\alpha \ = \ - 1.43$.


Author(s):  
Tong-Miin Liou ◽  
Chung-Chu Chen ◽  
Tzi-Wei Tsai

Detailed local Nusselt number distributions, streamwise mean flow patterns and cross-sectional secondary flow patterns, and friction factors in the first pass of a sharp turn two-pass square channel with various configurations of longitudinal vortex generator arranged on one wall were measured using transient liquid crystal thermography, laser-Doppler velocimetry, and pressure transducer probing, respectively. The Reynolds number, based on channel hydraulic diameter and bulk mean velocity, was fixed at 1.2 × 104. The vortex generator height-to-hydraulic diameter ratio and pitch-to-height ratio were 0.12 and 10, respectively. Comparisons in terms of heat transfer augmentation and uniformity and friction loss are first performed on 12 configurations of longitudinal vortex generator. The fluid dynamic mechanisms and wall confinement relevant to heat transfer enhancement are then documented for three-selected vortex generator models. In addition, the differences in fluid flow and heat transfer characteristics between a single vortex generator and a vortex generator array are addressed for the delta wing 1 U and 45° V U models which provide better thermal performance. The direction and strength of the secondary flow with respect to the heat transfer wall are found to be the most important fluid dynamic factors affecting the heat transfer promotion through the channel wall, followed by the convective mean velocity, and then the turbulent kinetic energy. Furthermore, the effects of the two-dimensional heat conduction near the vortex generator edge and unseen heat transfer areas on the Nusselt number estimation are documented in detail.


Author(s):  
Jaehyun Chung ◽  
Kyong-Hoon Lee ◽  
Rodney S. Ruoff ◽  
Junghoon Lee

Recently there has been significant progress in assembling an array of individual carbon nanotubes (CNTs) on microfabricated electrodes using the Composite Electric-field Guided Assembly (CEGA) method. This technology allows for integrating individual nano components with micro/nano systems, and should find application in areas such as sensors and NEMS devices. For realizing this as a viable technology, it is crucial to understand the electric-field-driven flow around the nanostructures being deposited. We previously discovered that the flow patterns that are present can lead to deposition of a periodic array CNTs. Here, we present recent experimental observations and the results of modeling/simulation on the electric-field-driven flow around CNTs. The results suggest that this method of assembling nanostructures be used for integration with an accuracy approaching tens of nanometers.


Sign in / Sign up

Export Citation Format

Share Document