scholarly journals Optimization and Characterization of Bio-oil Produced from Rice Husk Using Surface Response Methodology

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ige Ayodeji Rapheal ◽  
Elinge Cosmos Moki ◽  
Aliyu Muhammad ◽  
Gwani Mohammed ◽  
Lawal Hassan Gusau

AbstractThe study depicts the production, optimization and characterization of bio-oil from pyrolyzed rice husk using a fabricated fixed bed reactor. The pyrolysis process was conducted with bio-oil response, bio-char response and non-condensable gases response as products. The effect of pyrolysis variables were observed by the production of the bio-oil as the response. Sixty runs of pyrolysis experiments were suggested by Box Benkhen design indicated optimum pyrolysis conditions at particle size of 2.03mm mesh, reaction time of 81.80 mins and temperature of 650oC for rice husk. The maximum bio-oil yield was obtained with 38.39% at optimum condition of the variables. The bio-oil sample obtained had better performance compared with ASTM standard. Such a determination would contribute so immensely to a significant comprehension of the chemical efficiency of the pyrolysis reaction.

2014 ◽  
Vol 931-932 ◽  
pp. 225-230
Author(s):  
Khanita Kamwilaisak ◽  
Mallika Thabuot

The aim of this study is to use pyrolysis reaction to produce oil product as a fuel or chemical feedstock. The fixed bed reactor was used as a pyrolysis system. The pyrolysis reaction of residual para rubber was operated in the absence of catalyse. The operating conditions such as particle size (0.5 and 1.0 cm3) and pyrolysis temperature (500, 550 and 600 OC) were studied under N2 conditions and retention time 90 min. The result shows the para rubber size 1.0 cm3 can be produced liquid phase more than of para rubber size of 0.5 cm3. The optimised condition with the highest oil yield was at 550OC with rubber size of 1.0 cm3. The percentage of the product was 60% of liquid, 35% of gas and 5% of solid (char). Furthermore, the FTIR result can be presented the supported evidence that the transformation of aliphatic contents to be aromatic contents was increased with increased temperature. Also, GCMS analysis was used for the identification and quantification of the product. It was found 5 major products that can be used as a chemical feedstock. The maximum amount of component was 2-Benzenedicarboxylic acid, diisooctyl ester (Isooctyl phthalate) with 22.08%. This is a plasticizer with higher cost than fuel.


2014 ◽  
Vol 34 (1) ◽  
pp. 210-218 ◽  
Author(s):  
A. Ben Hassen-Trabelsi ◽  
T. Kraiem ◽  
S. Naoui ◽  
H. Belayouni

2014 ◽  
Vol 695 ◽  
pp. 228-231 ◽  
Author(s):  
K. Azduwin ◽  
Mohd Jamir Mohd Ridzuan ◽  
A.R. Mohamed ◽  
S.M. Hafis

Uncontrolled uses of fossil fuels lead to serious energy problems and since Malaysia is one of the largest producers of palm oil in the world, it has caused a lot of waste such as empty fruit bunches (EFB) which can actually be converted into renewable energy via pyrolysis. In this work, firstly the characterizations of the EFB were analyzed such as elemental, proximate and component analysis. The pyrolysis experiment of empty fruit bunch using vertical fixed-bed reactor was conducted at different pyrolysis temperature range from 300 - 600 °C and the particle size of EFB was also varied from 125-250 μm with constant nitrogen flow rate of 100 cm3/min, heating rate of 30 °C/min, and 30 minutes hold time. For the effect of temperature, the optimum pyrolysis temperature was 500 °C to produce maximum yield of bio-oil which is 39.2 wt. % while 46.13 wt. % is the highest bio-oil yield produced at size of 500-710 μm for the effect of particle size. The analysis on bio-oil was conducted by using Fourier Transform Infrared (FTIR) with the results shows for the presents of phenol/alcohol group, ketones and C-O bond. The bio-oil obtained is in the acidic condition with pH 3.5.


Author(s):  
Francis Mintah Dadzie ◽  
John Frimpong Kyei-Mensah ◽  
Michael Boakye

Energy crisis have become a global issue. Africa is one of the great contributors of agricultural produce, however no efficient way is established to covert the agricultural residues to useful products. Therefore, this study was to ascertain the combining effect of the agricultural residues on the yield and quality of bio oil produced. Biomass from cassava peel, rice husk and corn stalk were obtained and prepared. The sulphur and fixed carbon contents of the biomass were less making them more environmentally friendly. Biomass (i.e cassava peel, rice husk, and corn stalk) were mixed in different concentrations of 1:1:1, 2:1:1, 1:2:1, and 1:1:2 respectively and subjected to fast pyrolysis using a fixed bed reactor. The biomass concentration which gave the highest yield of bio-oil was 2:1:1 with a yield of 55.63 %. This yield was reached at a temperature of 525 °C. However, the physicochemical properties of the high yielding bio-oil fairly satisfied the ASTM D7544 standards. Further improvement on the bio-oil will enhance its usefulness as a suitable alternative to diesel.


2021 ◽  
Vol 1034 ◽  
pp. 199-205
Author(s):  
Dewi Selvia Fardhyanti ◽  
Megawati ◽  
Haniif Prasetiawan ◽  
Noniek Nabuasa ◽  
Mohammad Arik Ardianta

Biomass is a source of alternative energy that is environmentally friendly and very promising as one of the sources of renewable energy at present. The best candidate for the biomass waste for pyrolysis raw material is sugarcane bagasse. The sugarcane bagasse is a fibrous residue that is produced after crushing sugarcane for its extraction. Sugarcane bagasse is very potential to produce bio-oil through a pyrolysis process. The advantage of utilizing sugarcane bagasse is to reduce the amount of waste volume. Pyrolysis is a simple thermochemical conversion that transforms biomass with the near absence of absence of oxygen to produce fuel. Experiments were carried out on the fixed bed reactor. The analysis was carried out over a temperature range of 300-500 °C under atmospheric conditions. Products that are usually obtained from the pyrolysis process are bio-oil, char, and gas. Product analysis was performed using Gas Chromatography (GC) and Mass Spectrometry (MS) analysis. This research is aimed to study the kinetics of the sugarcane bagasse pyrolysis process to produce bio-oil. Three different models were proposed for the kinetic study and it was found that model III gave the best prediction on the calculation of pyrolysis process. From the calculation results, kinetic parameters which include activation energy (Ea) and the k factor (A) at a temperature of 300 °C is 2.4730 kJ/mol and 0.000335 s-1, at a temperature of 400 °C is 3, 2718 kJ/mol and 0.000563 s-1, and at a temperature of 500 °C is 4.8942 kJ/mol and 0.0009 s-1.


2021 ◽  
Vol 1 (1) ◽  
pp. 032-038
Author(s):  
J Sani ◽  
T Abubakar

Pyrolysis of the algae (chlorophyceac) was carried out using fixed bed reactor at 4500C. The mass balance of the pyrolysed algae were liquid fraction (oil) (10%), gaseous product (11%), solid product (char) (79%) and extent of conversion (21%. The proximate analysis of powdered sample was carried out in accordance with the official method of analytical chemistry (AOAC). The moisture content, ash content, volatile matter and fixed carbon determined were 3 + 0.33, 70.3 + 0.5, 6.3 + 0.3 and 20.2 + 0.07 respectively. The result obtained indicate that algae (chlorophyceae) could be used as feedstock for generation of pyrolysed oil which could probably be upgraded to fuel for both domestic and industrial purposes.


Sign in / Sign up

Export Citation Format

Share Document