scholarly journals Production and Characterisation of Bio-Oil from Agricultural Residues

Author(s):  
Francis Mintah Dadzie ◽  
John Frimpong Kyei-Mensah ◽  
Michael Boakye

Energy crisis have become a global issue. Africa is one of the great contributors of agricultural produce, however no efficient way is established to covert the agricultural residues to useful products. Therefore, this study was to ascertain the combining effect of the agricultural residues on the yield and quality of bio oil produced. Biomass from cassava peel, rice husk and corn stalk were obtained and prepared. The sulphur and fixed carbon contents of the biomass were less making them more environmentally friendly. Biomass (i.e cassava peel, rice husk, and corn stalk) were mixed in different concentrations of 1:1:1, 2:1:1, 1:2:1, and 1:1:2 respectively and subjected to fast pyrolysis using a fixed bed reactor. The biomass concentration which gave the highest yield of bio-oil was 2:1:1 with a yield of 55.63 %. This yield was reached at a temperature of 525 °C. However, the physicochemical properties of the high yielding bio-oil fairly satisfied the ASTM D7544 standards. Further improvement on the bio-oil will enhance its usefulness as a suitable alternative to diesel.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ige Ayodeji Rapheal ◽  
Elinge Cosmos Moki ◽  
Aliyu Muhammad ◽  
Gwani Mohammed ◽  
Lawal Hassan Gusau

AbstractThe study depicts the production, optimization and characterization of bio-oil from pyrolyzed rice husk using a fabricated fixed bed reactor. The pyrolysis process was conducted with bio-oil response, bio-char response and non-condensable gases response as products. The effect of pyrolysis variables were observed by the production of the bio-oil as the response. Sixty runs of pyrolysis experiments were suggested by Box Benkhen design indicated optimum pyrolysis conditions at particle size of 2.03mm mesh, reaction time of 81.80 mins and temperature of 650oC for rice husk. The maximum bio-oil yield was obtained with 38.39% at optimum condition of the variables. The bio-oil sample obtained had better performance compared with ASTM standard. Such a determination would contribute so immensely to a significant comprehension of the chemical efficiency of the pyrolysis reaction.


2019 ◽  
Vol 37 (9) ◽  
pp. 925-933 ◽  
Author(s):  
Derya Yeşim Hopa ◽  
Oğuzhan Alagöz ◽  
Nazan Yılmaz ◽  
Meltem Dilek ◽  
Gamze Arabacı ◽  
...  

In the present study, pyrolysis and co-pyrolysis of sugarcane bagasse, poppy capsule pulp, and rice husk were conducted in a fixed bed reactor at 550⁰C in nitrogen atmosphere. The moisture (5%–8%), ash (4%–17%), volatile matter (60%–76%), and fixed carbon analyses (11%–24%) of the utilized biomass were conducted. The decomposition behavior of biomasses due to the heat effect was investigated by thermogravimetric analysis/differential thermal analysis . In the pyrolysis of biomasses separately, the highest bio-oil yield was obtained with sugarcane bagasse (27.4%). In the co-pyrolysis of the binary blends of biomass, the highest bio-oil yield was obtained with the rice husk and sugarcane bagasse blends. While the mean bio-oil yield obtained with the separate pyrolysis of these two biomasses was 23.9%, it was observed that the bio-oil yield obtained with the co-pyrolysis of biomass blends was 28.4%. This suggested a synergistic interaction between the two biomasses during pyrolysis. It was observed that as the total ash content in the biomasses used in the pyrolysis increased, the bio-oil yield decreased, and the solid product content increased. Characterization studies of bio-oils were conducted by Fourier-transform infrared spectroscopy, gas chromatography–mass spectrometry (GC-MS), and hydrogen-1 nuclear magnetic resonance analyses. Results of these studies revealed that, all bio-oils were mainly composed of aliphatic and oxygenated compounds. The calorific values of bio-oils were determined by calorimeter bomb. Based on the GC-MS, the bio-oils with high fatty acid and its ester content also had high calorific values. The highest calorific value was 29.68 MJ kg-1, and this was obtained by pyrolysis of poppy capsule and sugarcane bagasse blend.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Nattasut Mantananont ◽  
Savitri Garivait ◽  
Suthum Patumsawad

This study is focused on the emission of fixed bed combustor batch operated. Real-time analyser ELPI (electrical low-pressure impactor) system was used to size-segregated particulate matter emission ranging from 40 nm to 10 μm. The results show that total number concentration were3.4×103,1.6×104, and1.5×105 particles/cm3⋅kgfuel, while total mass of particles were 12.2, 8.0, and 6.5 mg/Nm3⋅kgfuelfor combustion of lignite, rice husk and bagasse, respectively. But it can be noticed that cofiring released more particulate matter. Meanwhile it was found that the effect of ratio of over-fired air to total air supply is more pronounced, since decrease in this ratio, the amount of particles are decreased significantly. For particle size distribution, it can be observed that submicron-sized particles dominate and the most prevailing size is in the range: 50 nm<Dp<100 nm, for lignite and agricultural residues. However, during cofiring of fuel mixture at 70% rice husk mass concentration, it is found that there are two major fractions of particle size; 40 nm<Dp<70 nm and 0.2 μm<Dp<0.5 μm. The analysis of particle morphology showed that the isolate shape of submicron particle produced during lignite combustion is characterised by different geometries such as round, capsule, rod, flake-like, whereas the spherical shape is obtained with combustion of rice husk.


2014 ◽  
Vol 625 ◽  
pp. 626-629 ◽  
Author(s):  
Mandy Su Zan Gui ◽  
Seyed Amirmostafa Jourabchi ◽  
Hoon Kiat Ng ◽  
Suyin Gan

Slow pyrolysis (SP) and fast pyrolysis (FP) of rice husks, coconut shells and their mixtures were studied in a fixed bed reactor. The objectives of this study were to compare the yields and properties of bio-oils produced using SP and FP methods within a pyrolysis temperature range of 400 °C to 600 °C. Three different biomass compositions, 100% rice husks (RH), 100% coconut shells (CS) and a mixture of 50% rice husks with 50% of coconut shells (RH50/CS50) were experimented. In SP, the maximum yield of bio-oil for RH, CS and RH50/CS50 were 45.45%, 37.01%, 38.29% at temperatures of 550 °C, 500 °C and 600 °C respectively. As for FP, the maximum bio-oil yield obtained for RH, CS and RH50/CS50 were 50.52%, 40.14% and 42.25% at temperatures of 500 °C, 600 °C and 550 °C respectively. At these optimum pyrolysis temperatures, the percentage differences in bio oil yields for SP and FP were 10.57%, 8.11% and 9.83% for RH, CS and RH50/CS50 respectively. Based on American Society for Testing and Materials (ASTM) standard procedures, the properties of bio-oil were characterised and it was found that the bio oil produced by FP at optimum temperatures were less acidic, higher density, lower water content and viscosity as compared to the bio-oil produced by SP method for all biomass compositions.


2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


2017 ◽  
Vol 14 (1) ◽  
pp. 55-59 ◽  
Author(s):  
Ali Bahadir ◽  
Turgay Kar ◽  
Sedat Keles ◽  
Kamil Kaygusuz

Purpose The purpose of this paper is to investigate fast pyrolysis of maple fruit as an energy sources. This could serve as a solution to the energy sources problem. Design/methodology/approach Fast pyrolysis of maple fruit (samara) was achieved in a fixed bed reactor. The pyrolysis experiments have been conducted on the sample of maple seeds to particularly determine the effects of pyrolysis temperature, particle size and sweep gas flow rate on the pyrolysis product yields. Findings The oil of maple fruit from fast pyrolysis has good properties to be a potential candidate as a biofuel or as a source of chemicals. In addition to being environmentally desirable, it can reduce the energy cost, e.g. that Turkey imports a majority of its energy. Originality/value The use of maple fruit for fast pyrolysis and pyrolysis conditions impact on the yields of pyrolysis liquid can be considered as novel aspects of this paper.


Sign in / Sign up

Export Citation Format

Share Document