scholarly journals Influence of the Type of Adhesive on the Properties of the GFRP Composite Adhesive Joint, Determined on the Basis of the Static T-Peel Test

2021 ◽  
Vol 21 (3) ◽  
pp. 63-74
Author(s):  
Andrzej Kubit ◽  
Tomáš Katrňák ◽  
Tomasz Pytlowany

Abstract The article presents the results of experimental studies determining the influence of the type of adhesive on the static strength properties of the Glass Fiber Reinforced Polymer (GFRP) composite joint determined on the basis of the T-peel test. As part of the static tests on peeling joints, a comparison of peak load and stiffness for individual joints was made. The fracture surfaces were also analyzed, showing various failure mechanisms. It was shown that the variant of joints made with the Enguard BP72A polyester adhesive was characterized by the highest strength properties with a mean peak load of 836.73 N.

2020 ◽  
Vol 4 (3) ◽  
pp. 112
Author(s):  
Teruyoshi Kanno ◽  
Hiroki Kurita ◽  
Masashi Suzuki ◽  
Hitoshi Tamura ◽  
Fumio Narita

The purpose of this paper is to investigate the through-thickness stresses of woven glass fiber reinforced polymer (GFRP) composite laminates under combined tensile and shear loading. Tensile tests were carried out with cross specimens at room temperature under various stacking angles, and the through-thickness strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical microscopy observations. A three-dimensional finite element analysis (FEA) was carried out to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. The numerically determined interlaminar tensile and shear stresses at failure location were consistent with Hoffman and Mohr-Coulomb failure criteria when the stacking angle was relatively small. This work is the first attempt to quantify the relation between interlaminar tensile and shear strengths of GFRP composite laminates under tensile and shear loading simultaneously using a combined numerical and experimental approach. A method based on finite element stress analysis was developed for estimating the through-thickness strength of the composite laminates using the experimentally determined fracture load and location. The results suggest that the through-thickness strength under combined tensile and shear loading can be determined effectively by this approach for relatively small stacking angles.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Widia Wahyuni Amir ◽  
Aidah Jumahat ◽  
Jamaluddin Mahmud

This paper presents a study on the flexural properties of glass fiber reinforced polymer composites. The epoxy-nanoclay resin was milled using a three roll mill machine to produce exfoliated structure nanocomposites. The fiber laminates specimens were manufactured by vacuum bagging system. These specimens were tested in the three point bend configuration following the ASTM D7264. The flexural modulus, flexural strength and strain to failure were then determined based on the flexural test results. The results showed that flexural modulus and flexural strength increases when a certain amount of nanoclay was included in the resin system. A maximum of 80% and 37% improvement of flexural strength and flexural modulus, respectively, were found at 5 wt% nanoclay content when compared to the neat GFRP composite. The improved properties of GFRP composites were achieved mostly due to an increase on the interfacial surface areas as well as a well-dispersion of nanoclay in the GFRP composite system. The fracture surfaces of specimens after flexural test were observed under FESEM. The results showed that the compressive failure region in the fiber was a dominant failure mechanism of the specimens due to a large compressive area on the fracture surface.


2012 ◽  
Vol 238 ◽  
pp. 669-673 ◽  
Author(s):  
Ying Hao Liu ◽  
Yong Yuan

The paper analyzes the structural behavior of high strength concrete (HSC) beams reinforced with hybrid glass fiber reinforced polymer (GFRP) and steel reinforcements. The analysis refers to HSC beams reinforced with GFRP rebars and steel rebars placed in different layers. Results of the experimental and theoretical investigation are represented and discussed. Significant features of the structural behavior regarding flexural strength, deflection, are pointed out.


2018 ◽  
Vol 772 ◽  
pp. 28-32 ◽  
Author(s):  
Sunarto Kaleg ◽  
Dody Ariawan ◽  
Kuncoro Diharjo

Aluminum tri-hydroxide (ATH) and montmorillonite (MMT) are capable to enhance flame retardancy of glass fiber reinforced polymer (GFRP). Nevertheless, the combination of both flame retardant fillers on changes in the mechanical properties of GFRP is not yet known. The characterization of flexural strength and scanning electron microscope (SEM) observation on GFRP composite has been done. The result of flexural properties testing shows that the addition of ATH or MMT or a combination of both on the GFRP causes a decrease in flexural strength. GFRP with increased ATH loading causes an increase in elastic modulus. Contrarily, the MMT addition causes a decrease in the elastic modulus of the GFRP composite. SEM results on the fractured samples show that the high content of ATH or MMT in the UP tends to agglomerate thus showing visible holes that were formed from the filler particles pulled out from the matrix.


2020 ◽  
Vol 12 (4) ◽  
pp. 135-144
Author(s):  
Hazari NARESH ◽  
Padhy CHINMAYA PRASAD

The aerospace and automobile sectors are widely utilized the polymer composites. The composite materials, like unidirectional glass fiber reinforced polymer (UD-GFRP), is difficult to machine due to its anisotropic that is non-homogeneous character and such material requires special cutting tools. The proposed work is going to examine the tool wear, quality of the surface and forces generated in the various stages of inputs given to the machining of unidirectional glass fiber reinforced polymer (UD-GFRP) composites. The assessment of the machining incorporates tool wear investigations, surface roughness investigations and quality of material by varying input parameters. The Taguchi optimization technique with experimental design of L9 orthogonal array employed. The parameters range identified by trail runs and observations of conducted machining utilized for optimization. The Turning process parameters of cutting velocity or speed, rate of tool movement or feed rate and cutting depth on composite part or depth of cut were considered. The other factors, like tool material i.e., Poly-Crystalline Diamond (PCD) tool, its cutting regime (dry), profile of cutting tool are considered as constant parameters. The responses, like tool wear, surface finish, and cutting force, were measured against various input parameters, while machining the composite (UD-GFRP) composite part. The objective of this research is to establish relationship among various operating parameters to achieve desired results. That is major focus of the work on the economic condition for getting better values based on setting of input parameters.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402092205
Author(s):  
Jialu Ma ◽  
Jinwei Wang ◽  
Lingxin Zhang ◽  
Xudong Zhi

Long-span spatial structures are typical city landmarks. Earthquakes can cause serious damage to these structures, leading to tremendous human injury and financial loss. Therefore, it is essential to develop effective devices to enhance the performance of spatial structures. This article proposes a new triple-tube glass fiber–reinforced polymer and steel buckling-restrained brace device for reticulated shells, which integrates the light weight and high strength advantages of the composite materials. Specimens of scaled glass fiber–reinforced polymer and steel buckling-restrained braces were designed and produced, and pseudo-static tests were performed on these specimens with an MTS machine. Mechanical performance and damages were examined and compared. An elaborate finite-element model was setup, and the accuracy of this model was verified with the test data. In addition, the model was used to investigate the effect of the Pe/ Py ratio on the performance of full-scale triple-tube glass fiber–reinforced polymer and steel buckling-restrained brace devices. Finally, the lower limit of the Pe/ Py ratio for this kind of buckling-restrained brace was obtained by theoretical derivation and numerical parametric analysis.


Author(s):  
Ashkan Farazin ◽  
Afrasyab Khan

Fiber-reinforced polymer-based composites may experience various strain rates under different dynamic loads. As the mechanical behavior of these composites varies with strain rate, their response will be dependent on the strain rate. This paper presents a comprehensive review on glass fibers and composites reinforced with these fibers, as the most practical polymer-based composite, under dynamic loading. First, the properties of long glass fibers under different strain rates will be reviewed in detail. In the following, experimental studies on the effects of strain rate on various types of glass fiber-reinforced polymer-based composites will be categorized and presented. The behavior of thermoset polymers will be also addressed under different strain rates. Finally, various analytical and numerical macromechanical and micromechanical models will be comprehensively described for this type of composites.


Author(s):  
Visar Farhangi ◽  
Moses Karakouzian

This paper deals with analyzing the structural responses of glass-fiber-reinforced polymer (GFRP) tubes filled with recycled and concrete material for developing composite piles, as an alternative to traditional steel reinforced piles in bridge foundations. The Full-scale GFRP composite piles included three inner and outer layers, using a fiber-oriented material that was inclined longitudinally, almost 40 degrees from the horizontal axis of the pile. The segment between these two layers was inclined 80 degrees from the longitudinal axis of the tube. The behavior of the filled GFRP tubes was semi-linear, and resulted in increasing the total ductility and strength of the piles. Adjusting the material’s properties, such as the EAxial, EHoop, and Poisson ratios optimized the results. The lateral strength of the GFRP composite pile and pre-stressed piles are comparable in both axial and lateral loading conditions.


Sign in / Sign up

Export Citation Format

Share Document