scholarly journals Application of the second order generalized integrator in digital control systems

2014 ◽  
Vol 63 (3) ◽  
pp. 423-437 ◽  
Author(s):  
Kamil Możdżyński ◽  
Krzysztof Rafał ◽  
Małgorzata Bobrowska-Rafał

Abstract The paper describes second order generalized integrator (sogi) which is specialized in band-pass filtering and orthogonalization of periodic signals. Modifications of the structure and the influence of parameters on the system performance is described. The article highlights the particular importance of model discretization method in the practical implementation, as well as reviews estimation methods of the: amplitude, frequency, offset and phase angle of the periodic signal. Examples of simulation and experimental results are presented

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1732
Author(s):  
Vitaly Promyslov ◽  
Kirill Semenkov

The paper discusses the problem of performance and timing parameters with respect to the validation of digital instrumentation and control systems (I&C). Statistical methods often implicitly assume that the probability distribution law of the estimated parameters is close to normal. Thus, the confidence intervals for the parameter are determined on the grounds of this assumption. However, we encountered cases when the delay distribution law in I&C is not normal. In these cases, we used the non-statistical network calculus method for time parameters estimation. The network calculus method is well elaborated for lossless digital system models with seamless processing algorithm depending only on data volume. We consider the extension of the method to the case of I&C systems with considerable changes in the data flow and content-dependent processing disciplines. The model is restricted to systems with cyclic processing algorithms and fast network connections. Network calculus describes the data flow and system parameters in terms of flow envelopes and service curves that are generally unknown in advance. In this paper, we define equations that allow the calculation of these characteristics from experimental data. The correspondence of the Network Calculus and classical statistical estimation methods is discussed. Additionally, we give an example of model application to a real I&C system.


1993 ◽  
Vol 115 (4) ◽  
pp. 715-720 ◽  
Author(s):  
Ming C. Leu ◽  
Sangsik Yang ◽  
Andrew U. Meyer

All real-world control systems have saturation nonlinearity in final control elements (including actuators). When controllers involve integral action, reset windup can cause instability as well as make system performance unsatisfactory. Based on the describing function method and the generalized Popov criterion, this paper presents analysis of the global stability of a control system having a saturating second-order plant, both with and without using a deadbeat limiting scheme to constrain its controller output. The improvement of system performance by incorporating the anti-windup feature in the controller is illustrated by computer simulations.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4388
Author(s):  
Esmail Mahmoudi Saber ◽  
Issa Chaer ◽  
Aaron Gillich ◽  
Bukola Grace Ekpeti

Natural ventilation is gaining more attention from architects and engineers as an alternative way of cooling and ventilating indoor spaces. Based on building types, it could save between 13 and 40% of the building cooling energy use. However, this needs to be implemented and operated with a well-designed and integrated control system to avoid triggering discomfort for occupants. This paper seeks to review, discuss, and contribute to existing knowledge on the application of control systems and optimisation theories of naturally ventilated buildings to produce the best performance. The study finally presents an outstanding theoretical context and practical implementation for researchers seeking to explore the use of intelligent controls for optimal output in the pursuit to help solve intricate control problems in the building industry and suggests advanced control systems such as fuzzy logic control as an effective control strategy for an integrated control of ventilation, heating and cooling systems.


AIAA Journal ◽  
1970 ◽  
Vol 8 (4) ◽  
pp. 820-822
Author(s):  
CHARLES L. PHILLIPS ◽  
JOHN C. JOHNSON

2001 ◽  
Vol 123 (2) ◽  
pp. 279-283 ◽  
Author(s):  
Qian Chen ◽  
Yossi Chait ◽  
C. V. Hollot

Reset controllers consist of two parts—a linear compensator and a reset element. The linear compensator is designed, in the usual ways, to meet all closed-loop performance specifications while relaxing the overshoot constraint. Then, the reset element is chosen to meet this remaining step-response specification. In this paper, we consider the case when such linear compensation results in a second-order (loop) transfer function and where a first-order reset element (FORE) is employed. We analyze the closed-loop reset control system addressing performance issues such as stability, steady-state response, and transient performance.


Sign in / Sign up

Export Citation Format

Share Document