scholarly journals In vivo quercetol effect in lead acetate poisoning

2013 ◽  
Vol 24 (2) ◽  
pp. 73-78
Author(s):  
Florentina Roncea ◽  
Horatiu Miresan ◽  
Adrian Cosmin Rosca ◽  
Mihaela Bratu ◽  
Antoanela Popescu

Abstract The present study investigated the influence of quercetol upon δ-aminolevulinic acid (△ -ALA) urine concentration as marker of lead poisoning. The study was conducted on six lots of 6 mature Wistar rats of both sexes, lots not poisoned treated with different concentrations of quercetol (Q1, Q2), control (L6M), lot poisoned untreated (L3Pb), lots poisoned and treated with Q (L4Q1Pb and L5Q2Pb). After 11 days urine from 24 hours was collected for △-ALA spectrophotometric assay and testing the significance of mean difference of by "t" test Student at p <0.05. Statistical analysis of the data presented shows that compared to L2Q2 and L6M the amount of δ-ALA excreted in urine under quercetol influence (L4Q1Pb) shows statistical significance compared to (L2Q2) the amount of δ-ALA excreted in urine compared to (L3Pb) shows statistical significance. Different concentrations of quercetol (Q1, Q2), did not produce significant changes in the δ-ALA excreted compared with values of (L3Pb). Difference between means is probably due to sampling fluctuation, is not significant, reduced growth to eliminate δ-ALA on L4Q1Pb and L5Q2Pb is believed to be due to iron complex formation, reducing hemoglobin synthesis. From the results we conclude that hem biosynthesis does not start to grow under quercetol protection. The obtained data are not relevant statistical since interpretations were performed on non homogeneous groups in number of individuals, the percentage of mortality variability and high levels of standard deviation calculated from each lot.

2010 ◽  
Vol 58 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Roland Pálffy ◽  
Michal Behuliak ◽  
Roman Gardlík ◽  
Peter Jáni ◽  
L'udevít Kádaši ◽  
...  

Author(s):  
Yasmin Olsson ◽  
Helga Höifödt Lidö ◽  
Klara Danielsson ◽  
Mia Ericson ◽  
Bo Söderpalm

AbstractApproved medications for alcohol use disorder (AUD) display modest effect sizes. Pharmacotherapy aimed at the mechanism(s) by which ethanol activates the dopamine reward pathway may offer improved outcomes. Basal and ethanol-induced accumbal dopamine release in the rat involve glycine receptors (GlyR) in the nucleus accumbens (nAc). Glycine transporter 1 (GlyT-1) inhibitors, which raise extracellular glycine levels, have repeatedly been shown to decrease ethanol intake in the rat. To further explore the rational for elevating glycine levels in the treatment of AUD, this study examined accumbal extracellular glycine and dopamine levels and voluntary ethanol intake and preference in the rat, after systemic treatment with glycine. The effects of three different doses of glycine i.p. on accumbal glycine and dopamine levels were examined using in vivo microdialysis in Wistar rats. In addition, the effects of the intermediate dose of glycine on voluntary ethanol intake and preference were examined in a limited access two-bottle ethanol/water model in the rat. Systemic glycine treatment increased accumbal glycine levels in a dose-related manner, whereas accumbal dopamine levels were elevated in a subpopulation of animals, defined as dopamine responders. Ethanol intake and preference decreased after systemic glycine treatment. These results give further support to the concept of elevating central glycine levels to reduce ethanol intake and indicate that targeting the glycinergic system may represent a pharmacologic treatment principle for AUD.


Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Robert J. Witte ◽  
Norbert G. Campeau ◽  
Kiaran P. McGee ◽  
...  

Abstract Purpose MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate the clinical application of this technique in patients with meningioma. Materials and methods A whole-brain 3D isotropic 1mm3 acquisition under a 3.0T field strength was used to obtain MRF T1 and T2-based relaxometry values in 4:38 s. The accuracy of values was quantified by scanning a quantitative MR relaxometry phantom. In vivo evaluation was performed by applying the sequence to 20 subjects with 25 meningiomas. Regions of interest included the meningioma, caudate head, centrum semiovale, contralateral white matter and thalamus. For both phantom and subjects, mean values of both T1 and T2 estimates were obtained. Statistical significance of differences in mean values between the meningioma and other brain structures was tested using a Friedman’s ANOVA test. Results MR fingerprinting phantom data demonstrated a linear relationship between measured and reference relaxometry estimates for both T1 (r2 = 0.99) and T2 (r2 = 0.97). MRF T1 relaxation times were longer in meningioma (mean ± SD 1429 ± 202 ms) compared to thalamus (mean ± SD 1054 ± 58 ms; p = 0.004), centrum semiovale (mean ± SD 825 ± 42 ms; p < 0.001) and contralateral white matter (mean ± SD 799 ± 40 ms; p < 0.001). MRF T2 relaxation times were longer for meningioma (mean ± SD 69 ± 27 ms) as compared to thalamus (mean ± SD 27 ± 3 ms; p < 0.001), caudate head (mean ± SD 39 ± 5 ms; p < 0.001) and contralateral white matter (mean ± SD 35 ± 4 ms; p < 0.001) Conclusions Phantom measurements indicate that the proposed 3D-MRF sequence relaxometry estimations are valid and reproducible. For in vivo, entire brain coverage was obtained in clinically feasible time and allows quantitative assessment of meningioma in clinical practice.


2021 ◽  
pp. 019262332110274
Author(s):  
Ayumi Eguchi ◽  
Satoki Fukunaga ◽  
Keiko Ogata ◽  
Masahiko Kushida ◽  
Hiroyuki Asano ◽  
...  

Porphyrinogenic compounds are known to induce porphyria-mediated hepatocellular injury and subsequent regenerative proliferation in rodents, ultimately leading to hepatocellular tumor induction. However, an appropriate in vivo experimental model to evaluate an effect of porphyrinogenic compounds on human liver has not been fully established. Recently, the chimeric mouse with humanized liver (PXB mice) became widely used as a humanized model in which human hepatocytes are transplanted. In the present study, we examined the utility of PXB mice as an in vivo experimental model to evaluate the key events of the porphyria-mediated cytotoxicity mode of action (MOA) in humans. The treatment of PXB mice with 5-aminolevulinic acid, a representative porphyrinogenic compound, for 28 days caused protoporphyrin IX accumulation, followed by hepatocyte necrosis, increased mitosis, and an increase in replicative DNA synthesis in human hepatocytes, indicative of cellular injury and regenerative proliferation, similar to findings in patients with porphyria or experimental porphyria models and corresponding to the key events of the MOA for porphyria-mediated hepatocellular carcinogenesis. We conclude that the PXB mouse is a useful model to evaluate the key events of the porphyria-mediated cytotoxicity MOA in humans and suggest the utility of PXB mice for clarifying the human relevancy of findings in mice.


Author(s):  
Olugbemi T. Olaniyan ◽  
Olakunle A. Ojewale ◽  
Ayobami Dare ◽  
Olufemi Adebayo ◽  
Joseph E. Enyojo ◽  
...  

Abstract Objectives Lead primarily affects male reproductive functions via hormonal imbalance and morphological damage to the testicular tissue with significant alteration in sperm profile and oxidative markers. Though, different studies have reported that Cocos nucifera L. oil has a wide range of biological effects, this study aimed at investigating the effect of Cocos nucifera L. oil on lead acetate-induced reproductive toxicity in male Wistar rats. Methods Twenty (20) sexually matured male Wistar rats (55–65 days) were randomly distributed into four groups (n=5). Group I (negative control)—distilled water orally for 56 days, Group II (positive control)—5 mg/kg bwt lead acetate intraperitoneally (i.p.) for 14 days, Group III—6.7 mL/kg bwt Cocos nucifera L. oil orally for 56 days and Group IV—lead acetate intraperitoneally (i.p.) for 14 days and Cocos nucifera L. oil for orally for 56 days. Rats were sacrificed by diethyl ether, after which the serum, testis and epididymis were collected and used for semen analysis, biochemical and histological analysis. Results The lead acetate significantly increases (p<0.05) testicular and epididymal malondialdehyde (MDA) levels, while a significant reduction (p<0.05) in sperm parameters, organ weight, testosterone and luteinizing hormone was observed when compared with the negative control. The coadministration of Cocos nucifera oil with lead acetate significantly increases (p<0.05) testosterone, luteinizing hormone, sperm parameters and organ weight, with a significant decrease (p<0.05) in MDA levels compared with positive control. Histological analysis showed that lead acetate distorts testicular cytoarchitecture and germ cell integrity while this was normalized in the cotreated group. Conclusions Cocos nucifera oil attenuates the deleterious effects of lead acetate in male Wistar rats, which could be attributed to its polyphenol content and antioxidant properties.


Biomarkers ◽  
2021 ◽  
pp. 1-15
Author(s):  
Akpotu E. Ajirioghene ◽  
Samuel I. Ghasi ◽  
Lawrence O. Ewhre ◽  
Olusegun G. Adebayo ◽  
Jerome N. Asiwe

Sign in / Sign up

Export Citation Format

Share Document