scholarly journals The role of r esistant starch in human nutrition

2021 ◽  
Vol 14 (1) ◽  
pp. 57-83
Author(s):  
Zs. Zurbó ◽  
J. Csapó

Abstract In this paper, we examine the role and effect of resistant starch (RS) in human nutrition; further, the structure and properties of RS, the food sources based on resistance to digestion in the colon, and the physiological effects of RS are described. The nutritional value of RS, the effect of RS on short-chain fatty acid (SCFA) production, the relationships between RS and colon function, and the relationships between food starch, dietary fibre, and RS content and colon cancer development are reviewed. It has been shown that the use of RS in foods may have some benefits. Resistant starch, digestion of resistant-starch-containing foods have a number of health benefits for colon function but appear to have less effect on lipid-glucose metabolism. It has a positive effect on colon bacterial activity, promotes the growth of beneficial microbes, and reduces the activity of enzymes that are harmful to the digestive system. Under the influence of RS, increased SCFA production lowers the pH of the colon and stimulates bile acid secretion. The decreased pH protects against colon cancer and inhibits the conversion of primary and secondary bile acids, which are cytotoxic to intestinal cells. At the end of the review article, the relationships between RS and the colon microflora, its use as a prebiotic, and the relationship between RS and glucose metabolism are analysed. It was found that the use of RS in the diet might have benefits as it shortens the time it takes food to pass through the colon and increases the amount of stool. It was also found that the physicochemical properties of foods can directly affect the amount of RS and thereby the blood glucose levels and insulin response.

2007 ◽  
Vol 34 (6) ◽  
pp. 916-925 ◽  
Author(s):  
M. L. Soto-Montenegro ◽  
J. J. Vaquero ◽  
C. Arango ◽  
G. Ricaurte ◽  
P. García-Barreno ◽  
...  

2020 ◽  
Vol 123 (8) ◽  
pp. 942-950 ◽  
Author(s):  
Katherine E. Niederberger ◽  
David R. Tennant ◽  
Phillip Bellion

AbstractType 2 diabetes mellitus (T2DM) is one of the major diseases of our times. Besides being a considerable inconvenience for the patient, the associated healthcare expenses are tremendous. One of the cornerstones of T2DM prevention is a healthy diet, including a variety of fruits and vegetables. Apples are touted to have health benefits, and the apple polyphenol, phloridzin, has gained interest in recent years as it can reduce intestinal sugar uptake by inhibition of the Na/glucose cotransporter 1. By researching the amount of phloridzin in different food sources and linking them to their consumption data, we could estimate the average and high-level phloridzin consumption in Europe. On average, European people consume 0·7–7·5 mg/d phloridzin, the main contributors being apples and apple juice. High-level consumers may get up to 52 mg/d of phloridzin. Older people are more at risk of developing T2DM, yet they consume less phloridzin than adolescents and adults, as determined by our survey. Management of blood glucose levels might be improved by the consumption of phloridzin, as has been shown in recent clinical trials; these trials used phloridzin-enriched apple extract at doses exceeding those from normal food consumption. There are, however, indications that consumption of average to high levels of phloridzin via food might also contribute to reduced sugar load and a reduction in T2DM risk.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Rafael Grassi de Alcântara ◽  
Heidge Fukumasu ◽  
Paulo Cesar Fabricio Raspantini ◽  
Leonila Ester Reinert Raspantini ◽  
Caroline Joy Steel ◽  
...  

The consumption of composite flour, such as green banana and corn flour, is related to maintain stable blood glucose levels, due to high resistant starch levels. However, most of these studies have conducted analyses of unprocessed food such as flour. Therefore, this study aimed to evaluate the effect of baking on resistant starch concentration and digestion from bread produced with partial wheat flour substitution. Response surface methodology was used to evaluate bread physical-chemical characteristics, and then, sensorial and nutritional qualities of the bread were evaluated. The feasibility of incorporating 40% of corn flour was demonstrated, while incorporation of 20% produced bread with similar characteristics to the control; for green banana flour, these levels were 20 and 10%, respectively. Resistant starch levels of composite breads were also enhanced by in vitro analyses. On the other hand, in vivo blood glucose levels evidenced that the ingestion of breads produced with partial wheat flour substitution by green banana or corn flour promoted a more important peak in blood glucose levels in comparison with control bread, which was never previously presented in the literature. Bread ingestion rapidly increased the blood glucose levels of rats; once during the baking process, starch granules become gelatinized and therefore easily digestible. Furthermore, this study also highlighted the lack and need for future investigation of wheat flour-substituted baked goods, in order to better understand mechanical properties formation and also product digestibility.


2014 ◽  
Vol 11 (1) ◽  
pp. 24-31
Author(s):  
I I Dedov ◽  
G A Melnichenko ◽  
E A Troshina ◽  
N V Mazurina ◽  
N A Ogneva ◽  
...  

We’ve studied a carbohydrate metabolism in morbidly obese (MO) patients and the patients after bariatric surgery. The patients of the 1st group had BMI40 (n=22) and no history of diabetes mellitus. Patients after biliopancreatic diversion (BPD) performed for MO were included in the 2nd group (n=23). The 3rd group was a control group of normal weight healthy subjects (n=22). Blood glucose levels, insulin, GLP-1, GIP and glucagon during the OGTT (with 75 g of glucose) at 0, 30, 60 and 120 minutes were measured in all patients. In MO group fasting glucose levels were the highest. Impaired glucose metabolism was revealed in 68.2% of patients (n=10). Impaired fasting glucose (IFG) was diagnosed in 4 cases (18.2%), impaired glucose tolerance (IGT) in 11 patients (50%). In the BPD postprandial blood glucose levels (120 min) were lower if compared to the other groups. In 4 individuals (17.4%) we found postprandial hypoglycemia (2.8 mmol/l). Patients of the MO group had the highest fasting insulin levels and HOMA-IR (p0.001). The maximum of insulin concentration was seen on minute 30 of the OGTT in the 2nd and 3rd groups, and it was significantly higher in the post-bariatric patients (p=0.026). In MO group the maximum of the plasma insulin levels were on the 60th minute and were still elevated after 120 minutes. Fasting and stimulated (on the 30th minute) levels of GLP-1 were significantly higher after BPD (р=0.037 and p=0.022 at 0 and 30 min, respectively). Morbidly obese patients had higher fasting and stimulated GIP. Fasting glucagon concentrations were similar in the surgical and control groups, while the people with MO had higher initial levels of glucagon (p=0.013) and it was not suppressed during the OGTT (p=0.076). Glucose intolerance and insulin resistance incidence was higher in MO patients. Hyperglucagonemia, increased GIP and decreased GLP-1 levels are observed in MO patients. Stimulated plasma insulin and GLP-1 concentrations were significantly increased in patients who underwent BPD, and may cause postprandial hypoglycemia.


2021 ◽  
Author(s):  
Cuizhe Wang ◽  
Xiaolong Chu ◽  
Yuchun Deng ◽  
Jingzhou Wang ◽  
Tongtong Qiu ◽  
...  

Abstract Background: Obesity-induced elevated serum free fatty acids (FFAs) levels result in the occurrence of type 2 diabetes mellitus (T2DM). However, the molecular mechanism remains largely enigmatic. This study was to explore the effect and mechanism of KLF15 on FFAs-induced abnormal glucose metabolism. Methods: Levels of TG, TC, HDL-C, LDL-C, and glucose were measured by different assay kits. qRT-PCR and Western Blot were used to detect the levels of GPR120, GPR40, phosphorylation of p38 MAPK, KLF15, and downstream factors. Results: KLF15 was decreased in visceral adipose tissue of obesity subjects and high-fat diet (HFD) mice. In HFD mice, GPR120 antagonist significantly promoted KLF15 protein expression level and phosphorylation of p38 MAPK, meanwhile reduced the blood glucose levels. While, blocking GPR40 inhibited the KLF15 expression. In 3T3-L1 adipocytes, 1500 μM PA inhibited KLF15 through a GPR120/P-p38 MAPK signal pathway, and 750 μM OA inhibited KLF15 mainly through GPR120 while not dependent on P-p38 MAPK, ultimately resulting in abnormal glucose metabolism. Unfortunately, GPR40 didn’t contribute to PA or OA-induced KLF15 reduction. Conclusions: Both PA and OA inhibit KLF15 expression through GPR120, leading to abnormal glucose metabolism in adipocytes. Notably, the inhibition of KLF15 expression by PA depends on phosphorylation of p38 MAPK.


1988 ◽  
Vol 254 (2) ◽  
pp. E137-E143 ◽  
Author(s):  
S. Hulman ◽  
R. Kliegman ◽  
J. Heng ◽  
E. Crouser

Glucose turnover, clearance and response to insulin were determined in fasted newborn and adult dogs. Fasting levels of glucose and insulin and rates of glucose turnover and clearance were not different between the two groups. Blood glucose correlated with basal glucose turnover in newborn pups but not in adult dogs. Glucose turnover was not related to fasting plasma insulin levels. Glucose clearance was an inverse function of blood glucose levels among newborn but not adult dogs. Glucose clearance and blood glucose levels were not related to insulin concentrations. In response to euglycemic hyperinsulinemia, glucose metabolism increased 4-fold among adults but only 1.7-fold in pups. Hyperglycemic hyperinsulinemia increased glucose metabolism in both groups but to a much greater extent in the pups. Euglycemic hyperinsulinemia increased the metabolic clearance rate of glucose 4.2-fold among adults but only 1.8-fold in newborn dogs. In response to hyperglycemic hyperinsulinemia glucose clearance rates were now similar. Despite euglycemic hyperinsulinemia, the newborn dog had an attenuated response to insulin, demonstrating lower rates of glucose metabolism and glucose clearance. The response to the hyperglycemic stimuli suggests that maximal glucose uptake was not achieved during hyperinsulinemia alone. This response supports the concept of glucose-mediated regulation of glucose disposal in newborn animals.


2015 ◽  
Vol 227 (3) ◽  
pp. 153-165 ◽  
Author(s):  
Saeed Alshahrani ◽  
Mohammed Mashari Almutairi ◽  
Shams Kursan ◽  
Eduardo Dias-Junior ◽  
Mohamed Mahmoud Almiahuob ◽  
...  

The products of theSlc12a1andSlc12a2genes, commonly known as Na+-dependent K+2Cl−co-transporters NKCC2 and NKCC1, respectively, are the targets for the diuretic bumetanide. NKCCs are implicated in the regulation of intracellular chloride concentration ([Cl−]i) in pancreatic β-cells, and as such, they may play a role in glucose-stimulated plasma membrane depolarization and insulin secretion. Unexpectedly, permanent elimination of NKCC1 does not preclude insulin secretion, an event potentially linked to the homeostatic regulation of additional Cl−transporters expressed in β-cells. In this report we provide evidence for such a mechanism. Mice lacking a single allele ofSlc12a2exhibit lower fasting glycemia, increased acute insulin response (AIR) and lower blood glucose levels 15–30 min after a glucose load when compared to mice harboring both alleles of the gene. Furthermore, heterozygous expression or complete absence ofSlc12a2associates with increased NKCC2 protein expression in rodent pancreatic β-cells. This has been confirmed by using chronic pharmacological down-regulation of NKCC1 with bumetanide in the mouse MIN6 β-cell line or permanent molecular silencing of NKCC1 in COS7 cells, which results in increased NKCC2 expression. Furthermore, MIN6 cells chronically pretreated with bumetanide exhibit increased initial rates of Cl−uptake while preserving glucose-stimulated insulin secretion. Together, our results suggest that NKCCs are involved in insulin secretion and that a singleSlc12a2allele may protect β-cells from failure due to increased homeostatic expression ofSlc12a1.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5223
Author(s):  
Eleni Kakouri ◽  
Adamantia Agalou ◽  
Charalabos Kanakis ◽  
Dimitris Beis ◽  
Petros A. Tarantilis

Diabetes mellitus is a disease characterized by persistent high blood glucose levels and accompanied by impaired metabolic pathways. In this study, we used zebrafish to investigate the effect of crocins isolated from Crocus sativus L., on the control of glucose levels and pancreatic β-cells. Embryos were exposed to an aqueous solution of crocins and whole embryo glucose levels were measured at 48 h post-treatment. We showed that the application of crocins reduces zebrafish embryo glucose levels and enhances insulin expression. We also examined whether crocins are implicated in the metabolic pathway of gluconeogenesis. We showed that following a single application of crocins and glucose level reduction, the expression of phosphoenolpyruvate carboxykinase1 (pck1), a key gene involved in glucose metabolism, is increased. We propose a putative role for the crocins in glucose metabolism and insulin management.


Sign in / Sign up

Export Citation Format

Share Document