scholarly journals Simulation of Scots pine stand dynamics under climate change conditions in the Polish and Ukrainian parts of Roztocze

2013 ◽  
Vol 74 (3) ◽  
pp. 215-226
Author(s):  
Ihor Kozak ◽  
Patrycja Czekajska ◽  
Hanna Kozak ◽  
Adam Stępień ◽  
Piotr Kociuba

Abstract The study was conducted in the Polish (Roztoczanski National Park) and Ukrainian (Rava-Rus’ka Landscape Reserve and Yavorivskyi National Park) parts of the Roztocze region. In each of these locations three research areas were established in Scots pine (Pinus sylvestris L.) stands under similar ecological conditions. The purpose of this study was to carry out a survey of possible scenarios for pine stand dynamics in the Polish and Ukrainian parts of Roztocze using the FORKOME model. A control scenario was compared with four other climate change scenarios (warm dry and warm humid; cold dry and cold humid) for a period of covering the next 100 years. Using the control scenario, the FORKOME model predicted that for the next 100 years pine stands will dominate in terms of biomass and number of trees. The warm-dry and warm-humid climate scenarios resulted in slightly reduced biomass of pine stands. However pine would still maintain its dominance, although with a noticeable increase in beech and fir biomass. Nevertheless, in term of the number of trees during the second half of the simulation, it is beech and fir that dominate stand 1 in Roztoczanski National Park. Under the climate cooling scenario (cold dry and cold humid), the biomass of pine and spruce would increase during the next 100 years. Pine trees that would dominate in terms of their numbers, although the number of spruce individuals also tends to increase. The results presented in the paper indicate that the FORKOME model is very useful when investigating different climate changes scenarios in the Roztocze region.

Author(s):  
Kendra McLauchlan ◽  
Kyleen Kelly

One of the keystone tree species in subalpine forests of the western United States – whitebark pine (Pinus albicaulis, hereafter whitebark pine) – is experiencing a significant mortality event (Millar et al. 2012). Whitebark pine occupies a relatively restricted range in the high-elevation ecosystems in the northern Rockies and its future is uncertain. The current decline of whitebark pine populations has been attributed to pine beetle infestations, blister rust infections, anthropogenic fire suppression, and climate change (Millar et al. 2012). Despite the knowledge that whitebark pine is severely threatened by multiple stressors, little is known about the historic capacity of this species to handle these stressors. More specifically, it is unknown how whitebark pine has dealt with past climatic variability, particularly variation in the type of precipitation (rain vs. snow) available for soil moisture, and how differences in quantity of precipitation have influenced the establishment and growth of modern stands. We propose to study the past responses of whitebark pine to paleoclimatic conditions, which would be useful to park ecologists in developing new conservation and regeneration plans to prevent the extinction of this already severely threatened high-elevation resource. The purpose of this study is to determine in great temporal and spatial detail the demographics of the current stand of whitebark pine trees in the watershed surrounding an unnamed, high-altitude pond (known informally as Whitebark Pine Moraine Pond) located approximately 3.06 miles NW of Jenny Lake in Grand Teton National Park (GTNP). The main objectives of this study were: 1.) To obtain the precise GPS locations of the current stand of whitebark pine trees in the watershed to generate a GIS map detailing their locations. 2.) To obtain increment cores of a subset of the trees in the watershed to estimate age and date of establishment for the current stand of whitebark pines, with particular attention to fire history. 3.) To analyze ring widths from core samples to identify climatic indicators that may influence the regeneration and survival of whitebark pine.


2019 ◽  
Vol 92 (5) ◽  
pp. 648-658 ◽  
Author(s):  
J Routa ◽  
A Kilpeläinen ◽  
V -P Ikonen ◽  
A Asikainen ◽  
A Venäläinen ◽  
...  

Abstract The aim of this study was to examine how intensified silviculture affects timber production (sawlogs and pulpwood) and its economic profitability (net present value [NPV], with 2 per cent interest rate) based on forest ecosystem model simulations. The study was conducted on Norway spruce and Scots pine stands located on medium-fertile upland forest sites under middle boreal conditions in Finland, under current climate and minor climate change (the RCP2.6 forcing scenario). In intensified silviculture, improved regeneration materials were used, with 10–20 per cent higher growth than the unimproved materials, and/or nitrogen (N) fertilization of 150 kg ha−1, once or twice during a rotation of 50–70 years. Compared to the baseline management regime, the use of improved seedlings, alone or together with N fertilization, increased timber production by up to 26–28 per cent and the NPV by up to 32–60 per cent over rotation lengths of 60–70 years, regardless of tree species (although more in spruce) or climate applied. The use of improved seedlings affected timber yield and NPV more than N fertilization. Minor climate change also increased these outcomes in Scots pine, but not in Norway spruce.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0255619
Author(s):  
Anne Bartels ◽  
Ulrike G. Berninger ◽  
Florian Hohenberger ◽  
Stephen Wickham ◽  
Jana S. Petermann

Alpine lakes support unique communities which may respond with great sensitivity to climate change. Thus, an understanding of the drivers of the structure of communities inhabiting alpine lakes is important to predict potential changes in the future. To this end, we sampled benthic macroinvertebrate communities and measured environmental variables (water temperature, dissolved oxygen, conductivity, pH, nitrate, turbidity, blue-green algal phycocyanin, chlorophyll-a) as well as structural parameters (habitat type, lake size, maximum depth) in 28 lakes within Hohe Tauern National Park, Austria, between altitudes of 2,000 and 2,700 m a.s.l. The most abundant macroinvertebrate taxa that we found were Chironomidae and Oligochaeta. Individuals of Coleoptera, Diptera, Hemiptera, Plecoptera, Trichoptera, Tricladida, Trombidiformes, Veneroida were found across the lakes and determined to family level. Oligochaeta were not determined further. Generalized linear modeling and permanova were used to identify the impact of measured parameters on macroinvertebrate communities. We found that where rocky habitats dominated the lake littoral, total macroinvertebrate abundance and family richness were lower while the ratio of Ephemeroptera, Plecoptera and Trichoptera (EPT) was higher. Zoo- and phytoplankton densities were measured in a subset of lakes but were not closely associated with macroinvertebrate abundance or family richness. With increasing elevation, macroinvertebrate abundances in small and medium-sized lakes increased while they decreased in large lakes, with a clear shift in community composition (based on families). Our results show that habitat parameters (lake size, habitat type) have a major influence on benthic macroinvertebrate community structure whereas elevation itself did not show any significant effects on communities. However, even habitat parameters are likely to change under climate change scenarios (e.g. via increased erosion) and this may affect alpine lake macroinvertebrates.


1995 ◽  
Vol 60 ◽  
Author(s):  
N. Lust ◽  
B. Muys

This  study evaluates three important parameters of biodiversity in first  generation Scots pine forests on sandy soils: herbal layer, natural  regeneration and stand structure. The research was undertaken in the Belgian  Campine Region, where the original oak-birch forest had been destroyed in the  course of time and finally been replaced by monocultures of Scots pine. These  pine forests are characterised by a low biodiversity. In maturing stands of  this type, however, a spontaneous increase of biodiversity is noticed.     Herbal species diversity is very limited in all age classes. Spontaneous  establishment of Scots pine seedlings is presently a widespread phenomenon in  aging stands. Different regeneration patterns are found. Mainly due to the  lengthening of the rotation in combination with the ingrowth of several  hardwood species, the homogeneous Scots pine stands are gradually and  spontaneously transformed into heterogeneous mixed stands, featuring a  noticeable increase of biodiversity.     Nevertheless, selected human interventions may further increase  biodiversity. The fundamental management principles are discussed: avoidance  of big disturbances, lengthening of the rotation period, use of native tree  species, utilization of natural regeneration, protection of small valuable  biotopes and permanent monitoring.


2017 ◽  
Vol 356 ◽  
pp. 141-150 ◽  
Author(s):  
Aitor Ameztegui ◽  
Antoine Cabon ◽  
Miquel De Cáceres ◽  
Lluís Coll

2012 ◽  
Vol 52 (No. 3) ◽  
pp. 130-135 ◽  
Author(s):  
A. Borkowski

This study deals with the assessment of increment losses in Scots pine trees caused by the maturation feeding of pine shoot beetles Tomicus piniperda (L.) and T. minor (Hart.) (Col., Scolytidae) in even-aged stands growing during their entire life span within range of the influence of a sawmill and its timber yard. In spring 2004, on three sample plots, 0.2 ha in size, situated 60, 200, and 500 m from the yard, height and dbh of all trees were measured and increment cores were taken from randomly selected sample trees. An agreement between the spatial distribution of losses in tree increments and the distribution of damage to crowns of investigated stands indicated that the losses resulted from the maturation feeding of pine shoot beetles migrating from the sawmill timber yard. Divergence of growth in the about 25-years-old stand indicated the beginning of intensive feeding of beetles in pine shoots with a high level of probability. In comparison with the control stand the basal area losses in stands growing 60 and 200 m from the beetle source amounted to 57% and 46%, respectively. The difference in the height of trees was as large as almost 100%.


2016 ◽  
Vol 58 (4) ◽  
pp. 240-245
Author(s):  
Łukasz Tyburski ◽  
Paweł Przybylski

Abstract In 2015 in Kampinos National Park (KNP), monitoring of tree crown condition was conducted in specimens of the Scots pine, which is the dominant tree species in the park (73.3%). The monitoring was aimed at providing information about the health of pine trees in the national park area. The monitoring was conducted on 26 plots throughout the park. The stands where the pine is not a dominant species were omitted. On each plot, 20 trees were subjected to assessment. In total, 520 pine trees were examined. The monitoring was conducted by the assessment of tree crowns based on the adapted forest monitoring methodology conducted as part of National Environmental Monitoring. On the basis of the monitoring, it was found that 75.4% of the trees are characterised by slight defoliation and 94.4% of the specimens were not found to have discoloration of the assimilation apparatus. No differences were found between areas situated closer and further from the administrative borders of Warsaw. On the basis of the monitoring, it was found that the pine trees in KNP are in a good health condition. Dendrometric measurements show that the average diameter at breast height (DBH) of the analysed trees is 26.6 cm. The average height of the trees is 20.4 m. The average age of the examined tree stands is 84. The monitoring will be continued in subsequent years in order to record the changes taking place in tree crowns.


Sign in / Sign up

Export Citation Format

Share Document