scholarly journals Assessment of forest thinning intensity using sparse point clouds from repeated airborne lidar measurements

2018 ◽  
Vol 68 (1) ◽  
pp. 40-50 ◽  
Author(s):  
Mait Lang ◽  
Tauri Arumäe

Abstract Thinning cuttings create moderate disturbances in forest stands. Thinning intensity indicates the amount of felled wood relative to the initial standing volume. We used sparse point clouds from airborne lidar measurements carried out in 2008 and 2012 at Aegviidu test site, Estonia, to study stand level relationships of thinning intensity to the changes in canopy cover and ALS-based wood volume estimates. Thinning intensity (Kr, HRV) was estimated from forest inventory data and harvester measurements of removed wood volume. The thinning intensity ranged from 17% to 56%. By raising threshold from 1.3 m to 8.0 m over ground surface we observed less canopy cover change, but stronger correlation with thinning intensity. Correlation between ALS-based and harvester-based thinning intensity was moderate. The ALS-based thinning intensity estimate was systematically smaller than Kr, HRV. Forest height growth compensates for a small decrease in canopy cover and intensity estimates for weak thinnings are not reliable using sparse point clouds and a four-year measurement interval.

2016 ◽  
Vol 64 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Tauri Arumäe ◽  
Mait Lang

Abstract Airborne laser scanning (ALS) based standing wood volume models were analysed in two contrasting test sites with different forest types in Estonia. In Aegviidu test site main tree species are Scots pine and Norway spruce and Laeva test site is mainly dominated by deciduous species. ALS data measurements were carried out for Aegviidu in 2008 and for Laeva in 2013. Approximately 450 sample plots were established additionally to the forest inventory dataset in both test sites. Exclusive to the sample plots, 46 stands were measured in 2012 in Aegviidu for stand level model. The sample plot-based model standard error in Aegviidu was Se = 59.8 m3/ha (22%) and in Laeva Se = 69.2 m3/ha (29%). The stand-level model based on 46 measured stands from Aegviidu had Se = 38.4 m3/ha. Based on the models a cross-validation between the two test sites was carried out and systematic differences between the two test sites were found. The reasons are related to differences in optical properties of trees, crown shapes, flight configuration and canopy cover even though the sample plot based models included ALS-based canopy cover variable. The ALS-based wood volume estimate was also compared to forest inventory (FI) data and systematically larger estimates compared to FI dataset in both test sites were found. This average systematic error increased substantially (by 100 m3/ha) for stands with volume over 250 m3/ha. It was also detected that a model developed on small point clouds drawn for sample plots may produce systematic errors when applied to stand-level point clouds.


2019 ◽  
Vol 11 (5) ◽  
pp. 1251 ◽  
Author(s):  
Marta Szostak ◽  
Kacper Knapik ◽  
Piotr Wężyk ◽  
Justyna Likus-Cieślik ◽  
Marcin Pietrzykowski

The study was performed on two former sulphur mines located in Southeast Poland: Jeziórko, where 216.5 ha of afforested area was reclaimed after borehole exploitation and Machów, where 871.7 ha of dump area was reclaimed after open cast strip mining. The areas were characterized by its terrain structure and vegetation cover resulting from the reclamation process. The types of reclamation applied in these areas were forestry in Jeziórko and agroforestry in the Machów post-sulphur mine. The study investigates the possibility of applying the most recent Sentinel-2 (ESA) satellite imageries for land cover mapping, with a primary focus on detecting and monitoring afforested areas. Airborne laser scanning point clouds were used to derive precise information about the spatial (3D) characteristics of vegetation: the height (95th percentile), std. dev. of relative height, and canopy cover. The results of the study show an increase in afforested areas in the former sulphur mines. For the entire analyzed area of Jeziórko, forested areas made up 82.0% in the year 2000 (Landsat 7, NASA), 88.8% in 2009 (aerial orthophoto), and 95.5% in 2016 (Sentinel-2, ESA). For Machów, the corresponding results were 46.1% in 2000, 57.3% in 2009, and 60.7% in 2016. A dynamic increase of afforested area was observed, especially in the Jeziórko test site, with the presence of different stages of vegetation growth.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 284 ◽  
Author(s):  
Luke Wallace ◽  
Chris Bellman ◽  
Bryan Hally ◽  
Jaime Hernandez ◽  
Simon Jones ◽  
...  

Point clouds captured from Unmanned Aerial Systems are increasingly relied upon to provide information describing the structure of forests. The quality of the information derived from these point clouds is dependent on a range of variables, including the type and structure of the forest, weather conditions and flying parameters. A key requirement to achieve accurate estimates of height based metrics describing forest structure is a source of ground information. This study explores the availability and reliability of ground surface points available within point clouds captured in six forests of different structure (canopy cover and height), using three image capture and processing strategies, consisting of nadir, oblique and composite nadir/oblique image networks. The ground information was extracted through manual segmentation of the point clouds as well as through the use of two commonly used ground filters, LAStools lasground and the Cloth Simulation Filter. The outcomes of these strategies were assessed against ground control captured with a Total Station. Results indicate that a small increase in the number of ground points captured (between 0 and 5% of a 10 m radius plot) can be achieved through the use of a composite image network. In the case of manually identified ground points, this reduced the root mean square error (RMSE) error of the terrain model by between 1 and 11 cm, with greater reductions seen in plots with high canopy cover. The ground filters trialled were not able to exploit the extra information in the point clouds and inconsistent results in terrain RMSE were obtained across the various plots and imaging network configurations. The use of a composite network also provided greater penetration into the canopy, which is likely to improve the representation of mid-canopy elements.


Author(s):  
T. Yotsumata ◽  
M. Sakamoto ◽  
T. Satoh

Abstract. In this paper, we discuss how to improve the quality of classification results when deep learning is applied for the filtering of airborne LiDAR point cloud. We introduce the baseline method which utilizes convolutional neural network (CNN) based on voxelization, and then we propose three methods to improve the quality of classification result. The first method is data pre-processing that aims to exclude data in advance that is clearly not on the ground surface in order to efficiently extract the ground surface data. Data pre-processing can greatly reduce the number of target points and the subsequent processing can be performed efficiently. It also has the effect of preventing noise-like points floating in the air from being misclassified as the ground surface, as compared to the case without pre-processing. The second method is changing the network structure. In recent years, various networks have been proposed for classifying point clouds. In our study, the baseline is using very simple networks. In order to improve the classification result of the baseline method, the layer depth and the range size of convolution are changed, and we investigated about the improvements of the results. The current discussion can be used as a guidance when considering new networks. The third method is the integration of classification results from multiple networks. We integrated individual results from multiple networks with varying layer depths and convolution sizes, starting with the baseline, and investigated whether the results improved. We observed that even if the individual results were similar, the classification results can be improved by integrating the results.


2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wuming Zhang ◽  
Shangshu Cai ◽  
Xinlian Liang ◽  
Jie Shao ◽  
Ronghai Hu ◽  
...  

Abstract Background The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree crown) in LiDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory parameters. Methods We develop an algorithm based on cloth simulation for constructing a pit-free CHM. Results The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-free CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms, as evidenced by the lowest average root mean square error (0.4981 m) between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best performance overall in terms of maximum tree height estimation (average bias = 0.9674 m). Conclusion The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.


Sign in / Sign up

Export Citation Format

Share Document