scholarly journals Thermal history of the Maramureş area (Northern Romania) constrained by zircon fission track analysis: Cretaceous metamorphism and Late Cretaceous to Paleocene exhumation

2013 ◽  
Vol 64 (5) ◽  
pp. 383-398 ◽  
Author(s):  
Heike R. Gröger ◽  
Matthias Tischler ◽  
Bernhard Fügenschuh ◽  
Stefan M. Schmid

Abstract This study presents zircon fission track data from the Bucovinian nappe stack (northern part of the Inner Eastern Carpathians, Rodna Mountains) and a neighbouring part of the Biharia nappe system (Preluca massif) in order to unravel the thermal history of the area and its structural evolution by integrating the fission track data with published data on the tectonic and sedimentary evolution of the area. The increase of metamorphic temperatures towards the SW detected by the zircon fission track data suggests SW-wards increasing tectonic overburden (up to at least 15 km) and hence top NE thrusting. Sub-greenschist facies conditions during the Alpine metamorphic overprint only caused partial annealing of fission tracks in zircon in the external main chain of the Central Eastern Carpathians. Full annealing of zircon points to at least 300 °C in the more internal elements (Rodna Mountains and Preluca massif). The zircon fission track central and single grain ages largely reflect Late Cretaceous cooling and exhumation. A combination of fission track data and stratigraphic constraints points to predominantly tectonic differential exhumation by some 7-11 km, connected to massive Late Cretaceous extension not yet detected in the area. Later events such as the latest Cretaceous (“Laramian”) juxtaposition of the nappe pile with the internal Moldavides, causing exhumation by erosion, re-burial by sedimentation and tectonic loading during the Cenozoic had no impact on the zircon fission track data; unfortunately it prevented a study of the low temperature part of the Late Cretaceous exhumation history.

2013 ◽  
Vol 330 ◽  
pp. 1067-1070
Author(s):  
Hui Xiao ◽  
Wei Han ◽  
Feng Guo

This study uses the application of zircon fission track (ZFT) and apatite fission track (AFT) thermochronometry technique to investigate the tectonic and uplift history of the Kuruketage area, north-east edge of the Tarim Basin. Based on measured ZFT, AFT and equivalent vitrinite reflectance measurements of samples in sedimentary rocks in Kuruketage area, the temperature time evolution history from early Paleozoic strata was modeled. The results show that the youngest peaks of ZFT at 371-392Ma and 328 - 305.7Ma record Hercynian tectonic and uplift event; the AFT peaks at 134.5 - 164Ma, 73 - 100Ma and 35.4Ma mainly represent the Late-Cretaceous tectonic and uplift event in Kuruketage area. The AFT thermal modeling results from the early Paleozoic strata indicate that the maximum paleo-temperature (at 140 215°C) experienced in late Silurian to early Devonian, and the strata temperature decreased to about 120°C before the Late-Cretaceous.


2010 ◽  
Vol 147 (6) ◽  
pp. 801-813 ◽  
Author(s):  
UWE RING ◽  
MATTHIAS BERNET

AbstractWe apply fission-track thermochronology to shed new light on the tectonic history of Zealandia during Late Cretaceous continental extension and the onset of Late Tertiary mountain building in the Southern Alps of New Zealand. The Southern Alps are one of the fastest erosionally exhuming mountain belts on Earth. Exhumation of the Bonar Range in Westland just to the northwest of the Alpine Fault is orders of magnitude slower. We report apatite and zircon fission-track ages from samples that were collected along an ENE–WSW profile across the central Bonar Range, parallel to the tectonic transport direction of a prominent ductile fabric in the basement gneiss. Zircon fission-track (ZFT) ages show a large spread from 121.9 ± 12.1 Ma to 74.9 ± 7.2 Ma (1σ errors). The youngest ZFT ages of 78 to 75 Ma occur at low elevations on either side of the Bonar Range and become older towards the top of the range, thereby showing a symmetric pattern parallel to the ENE-trending profile across the range. Age–elevation relationships suggest an exhumation rate of 50–100 m Ma−1. We relate the ZFT ages to slow erosion of a tectonically inactive spot in the Late Cretaceous magmatic arc of Zealandia. Therefore, the first main significance of the paper is that it demonstrates that not all of 110–90 Ma Zealandia was necessarily participating in extreme core complex-related extension but that there were enclaves of lithosphere that underwent slow erosion. The apatite fission-track (AFT) ages range from 11.1 ± 1.9 Ma to 5.3 ± 1.0 Ma and age–elevation relationships suggest an exhumation rate of c. 200 m Ma−1. We relate the AFT ages to the inception of transpressive motion across the Alpine Fault and modest exhumation in its footwall in Late Miocene times. If so, the second significant point of this paper is that transpressive motion across the Alpine Fault was already under way by c. 11 Ma.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 116
Author(s):  
Yue Sun ◽  
Barry P. Kohn ◽  
Samuel C. Boone ◽  
Dongsheng Wang ◽  
Kaixing Wang

The Zhuguangshan complex hosts the main uranium production area in South China. We report (U-Th)/He and fission track thermochronological data from Triassic–Jurassic mineralized and non-mineralized granites and overlying Cambrian and Cretaceous sandstone units from the Lujing uranium ore field (LUOF) to constrain the upper crustal tectono-thermal evolution of the central Zhuguangshan complex. Two Cambrian sandstones yield reproducible zircon (U-Th)/He (ZHe) ages of 133–106 Ma and low effective uranium (eU) content (270–776 ppm). One Upper Cretaceous sandstone and seven Mesozoic granites are characterized by significant variability in ZHe ages (154–83 Ma and 167–36 Ma, respectively), which show a negative relationship with eU content (244–1098 ppm and 402–4615 ppm), suggesting that the observed age dispersion can be attributed to the effect of radiation damage accumulation on 4He diffusion. Correspondence between ZHe ages from sandstones and granites indicates that surrounding sedimentary rocks and igneous intrusions supplied sediment to the Cretaceous–Paleogene Fengzhou Basin lying adjacent to the LUOF. The concordance of apatite fission track (AFT) central ages (61–54 Ma) and unimodal distributions of confined track lengths of five samples from different rock units suggest that both sandstone and granite samples experienced a similar cooling history throughout the entire apatite partial annealing zone (~110–60 °C). Apatite (U-Th-Sm)/He (AHe) ages from six non-mineralized samples range from 67 to 19 Ma, with no apparent correlation to eU content (2–78 ppm). Thermal history modeling of data suggests that the LUOF experienced relatively rapid Early Cretaceous cooling. In most samples, this was followed by the latest Early Cretaceous–Late Cretaceous reheating and subsequent latest Late Cretaceous–Recent cooling to surface temperatures. This history is considered as a response to the transmission of far-field stresses, involving alternating periods of regional compression and extension, related to paleo-Pacific plate subduction and subsequent rollback followed by Late Paleogene–Recent India–Asia collision and associated uplift and eastward extrusion of the Tibetan Plateau. Thermal history models are consistent with the Fengzhou Basin having been significantly more extensive in the Late Cretaceous–Early Paleogene, covering much of the LUOF. Uranium ore bodies which may have formed prior to the Late Cretaceous may have been eroded by as much as ~1.2 to 4.8 km during the latest Late Cretaceous–Recent denudation.


1993 ◽  
Vol 30 (4) ◽  
pp. 764-768 ◽  
Author(s):  
John M. Murphy ◽  
Arne Bakke

Eight apatite and two zircon fission-track ages provide evidence of complex Tertiary thermal overprinting by hydrothermal fluids in the Gilmore Dome area. Five ages on apatite from the Fort Knox gold deposit average 41 Ma, one from the Stepovich prospect is 80 Ma, and two from Pedro Dome average 67 Ma. Elevations of these samples overlap but their ages do not, indicating that each area experienced a different thermal history.Ages of apatite from the Fort Knox gold deposit decrease with elevation from 42 to 36 Ma but have data trends indicative of complex cooling. Two ~51 Ma ages on zircon indicate that maximum temperatures approached or exceeded ~180 °C. An alteration assemblage of chalcedony + zeolite + calcite + clay in the deposit resulted from deposition by a paleo-hydrothermal system. The data suggest that the system followed a complex cooling path from > 180 to < 110 °C between 51 and 36 Ma, and that final cooling to below 60 °C occurred after ~25 Ma.The 80 Ma age from Stepovich prospect either resulted from cooling after intrusion of the underlying pluton (~90 Ma) or records postintrusion thermal overprinting sometime after ~50 Ma. The 67 Ma samples from Pedro Dome may also have experienced partial age reduction during later heating. The differences in the data from the different areas and the presence of a late alteration assemblage at Fort Knox suggest that the fluids responsible for heating were largely confined to the highly fractured and porous Fort Knox pluton.


Sign in / Sign up

Export Citation Format

Share Document