scholarly journals Digital image analysis to estimate the minimum number of Eurytrema coelomaticum eggs in the uterus of adult specimens

2018 ◽  
Vol 55 (3) ◽  
pp. 204-212
Author(s):  
F. A. da Silva ◽  
C. Monteiro da Silva ◽  
F. B. de Almeida ◽  
R. Rodrigues-Silva

Summary This study was carried out to estimate the minimal number of eggs present in adult E. coelomaticum uterus. Samples were collected during post-mortem inspection and were submitted to light microscopy (bright field). The length, width, the total area of the parasite, uterus, and eggs were measured. The ImageJ software was used to calculate the area of the different parameters analyzed in this study. It was possible to observe that the uterus corresponds on average to 51.9 % of the total area of the parasite (ranging from 45 to 64 %). The number of eggs present in the uterus of parasites ranged from 5,946 to 15,813. To estimate the number of eggs three scenarios were considered, where the first taken into account the number of whole eggs observed in the image. In the second way to estimate the number of eggs, all the structures were considered (whole eggs and fractions that could be delimited) and compared with manual counting. Finally, in the last scenario, was considered an occupancy rate of 100 % of the uterine area per eggs, since there are overlapping eggs and these cannot be correctly delimited and accounted for. This study describes an important tool for quantifying eggs in a nondestructive manner and aggregate information until then is not explained by other works.

Author(s):  
Shravya N ◽  
Swetha Ravichandran ◽  
Rinu Thomas

Aim: To compare the eyelid angle measured by using a manual method (Using protractor) and digital image analysis method (Using ImageJ software) at different distances of eye gaze. Methodology: This prospective cross-sectional study was conducted in the preclinical lab at Manipal College of Health Professions. Subjects with no eyelid abnormalities were included in the study and they were asked to fixate at different distances a) at 3 metre (Distance gaze) b) at 70 cm (Intermediategaze) and c) at 40 cm(Near gaze). Using a protractor, the eyelid angle measurements were repeated at various distances which comprised the manual measurement. In the image analysis method, images were captured during distance, intermediate and near gaze using smartphone placed on theside of the face. These images were then analysed using ImageJ software for determining eyelid angle using image analysis method. Palpebral fissure height, Palpebral fissure width, Interpupillary distance, Intercanthal width, Binocular width, Height of open upper lid were some additional anthropometry measurements that were done using meter scale and PD ruler. Results: The mean age of the participants was 20±0.5 years. Anthropometry measurements of the eyelid and Palpebral fissure were done using meter scaleand PD ruler. The mean and standard deviation of the measured parametersare as follows Interpupillary distance: 60.95±2.37 mm, Endo Inter canthal distance: 32.20±2.39 mm, Exo Inter cantal distance: 95.50±3.80 mm, Palpebralfissure height_OD: 12.11±1.32 mm, Palpebral fissure height_OS:12.16±1.46mm, PFW_OD: 32.00±1.10 mm, PFW_OS: 32.11±1.24 mm, Height of upper eyelids_OD: 10.26±1.66 mm and Height of upper eyelids_OS:10.42±1.83 mm. In the right eye, there was no statistically significant difference (p>0.05) between manual protractor method and digital image analysismethod at distance but there was a statistically significant difference (p<0.05)between manual protractor method and digital image analysis method atIntermediate and near. In left eye, there was statistically significant difference(p<0.05) between manual protractor method and digital image analysis method at all three distances. Conclusion: There is a significant difference in eyelid angle measured using manual protractor method and digital image analysis method. The measurement of eyelid angle serves as a critical reference point during cosmetic and reconstructive surgical interventions of the eyelid and accurate measurements are essential for preoperative assessment, surgical planning and postoperative evaluation. Hence more studies on the validation of the anthropometry measurements and eyelid angle using digital image analysis areessential to use digital image analysis in routine eye care practice.


2017 ◽  
Vol 37 (2) ◽  
pp. 228-235
Author(s):  
Mervat M.F. El-Deftar ◽  
Samir S. Amer ◽  
Eman M.O. El-Touny ◽  
Amany Aboubakr ◽  
Heba El-Zawahry ◽  
...  

2015 ◽  
Vol 29 (4) ◽  
pp. 397-403 ◽  
Author(s):  
Andrzej Anders ◽  
Zdzisław Kaliniewicz ◽  
Piotr Markowski

Abstract Numerical models of bean seeds cv. Złota Saxa and yellow lupine seeds cv. Juno were generated with the use of a 3D scanner, the geometric parameters of seeds were determined based on the models developed, and compared with the results of digital image analysis and micrometer measurements. Measurements of seed length, width and thickness performed with the use of a micrometer, 3D scanner and digital image analysis produced similar results that did not differ significantly at α = 0.05. The micrometer delivered the simplest and fastest measurements. The mean surface area of bean seeds cv. Złota Saxa and yellow lupine seeds cv. Juno, calculated with the use of mathematical formulas based on the results of micrometer measurements and digital image analysis, differed significantly from the mean surface area determined with a 3D scanner. No significant differences in seed volume were observed when this parameter was measured with a 3D scanner and determined with the use of mathematical formulas based on the results of digital image analysis and micrometer measurements. The only differences were noted when the volume of yellow lupine seeds cv. Juno was measured in a 25 ml liquid pycnometer.


2021 ◽  
pp. 1-3
Author(s):  
Manoj Chhetri ◽  
Charles Fontanier

Objective methods of estimating green coverage using digital image analysis have been used increasingly by turfgrass scientists. The objective of our research was to evaluate the effectiveness of Canopeo, a relatively new smartphone application, for estimating green coverage of bermudagrass (Cynodon dactylon) emerging from winter dormancy, with or without colorants. A field study was conducted on a research ‘U3’ bermudagrass fairway in Stillwater, OK, during Spring 2019 and 2020. The experiment was conducted as a randomized complete block design with three colorant treatments: Endurant Fairway (FW), Endurant Perennial Ryegrass (PR), and an untreated control. Green coverage of the turfgrass canopy was determined weekly from mid-March to early May using a digital camera and ImageJ software, and a smartphone and the Canopeo application. Green coverage estimates from Canopeo correlated strongly (r = 0.91) with those from ImageJ when no colorants were applied. Correlation between Canopeo and ImageJ was diminished under plots treated with colorants. Canopeo is an effective tool for estimating green coverage of living turfgrasses, but additional calibration may be required for acceptable performance when evaluating greenness of colorant-treated turfgrasses.


2014 ◽  
Vol 12 (3) ◽  
pp. 3325-3328
Author(s):  
Jasdeep Kaur

-  This paper investigates the use of digital image analysis techniques for developing for counting clustered soya bean seeds. Images are extracted from source WWW.21food.com). As manual counting have several issues such as low accuracy and higher cost. Automated counting techniques give a fast and low cost of counting soya bean seeds. This paper follows 5 processing steps. First process converting the image into gray scale and thresholding is applied using CLAHE. Second dilation is applied to enhance the image. Third applied masking to enhance the image. Fourth edge detection algorithm is applied. Fifth step beans extracted with respect to bean shape. 


2012 ◽  
Vol 136 (6) ◽  
pp. 627-634 ◽  
Author(s):  
Patricia Switten Nielsen ◽  
Rikke Riber-Hansen ◽  
Jakob Raundahl ◽  
Torben Steiniche

Context.—The proliferation marker Ki67 is an important diagnostic and prognostic aid in surgical pathology. However, manual quantification in a counting frame to accurately establish the proliferation rate (Ki67 index) is cumbersome and time-consuming. Instead, digital image analysis of Ki67/MART1 double stains may provide fast and novel index computations for entire tumor sections. Objectives.—To design and compare image analysis protocols that compute Ki67 indices of Ki67/MART1 double stains, to compare automated indices with previously published manual indices, and to compare the total number of proliferating cells (mimicking a Ki67 single stain) with the number of MART1-verified proliferating cells. Design.—Whole slide images were captured from 48 melanomas and 77 nevi stained with an immunohistochemical cocktail against Ki67 and MART1. Ki67 indices were determined by digital image analysis and different equations based on number or area. Results.—The differences between mean indices of melanomas and nevi were significant (P < .001) in all index computations. Number-based image analysis of lesions with more than 250 melanocytic cells misclassified 1 of 42 melanomas and 4 of 53 nevi, numbers comparable with manual counting. Automated indices were significantly higher than manual indices, as were indices of mimicked Ki67 single stains compared with MART1-verified Ki67 indices (P < .001). Conclusions.—Ki67 indices established by digital image analysis of Ki67/MART1 double stains demonstrated excellent abilities to discriminate melanomas from nevi with diagnostic performances equal to manually performed indices. Testing different definitions of the automated MART1-verified Ki67 index, no single definition stood out; thus, a variety of definitions may be used.


Author(s):  
M.E. Rosenfeld ◽  
C. Karboski ◽  
M.F. Prescott ◽  
P. Goodwin ◽  
R. Ross

Previous research documenting the chronology of the cellular interactions that occur on or below the surface of the endothelium during the initiation and progression of arterial lesions, primarily consisted of descriptive studies. The recent development of lower cost image analysis hardware and software has facilitated the collection of high resolution quantitative data from microscopic images. In this report we present preliminary quantitative data on the sequence of cellular interactions that occur on the endothelium during the initiation of atherosclerosis or vasculitis utilizing digital analysis of images obtained directly from the scanning electron microscope. Segments of both atherosclerotic and normal arteries were obtained from either diet-induced or endogenously (WHHL) hypercholesterolemic rabbits following 1-4 months duration of hypercholesterolemia and age matched control rabbits. Vasculitis was induced in rats following placement of an endotoxin soaked thread adjacent to the adventitial surface of arteries.


Author(s):  
T.B. Ball ◽  
W.M. Hess

It has been demonstrated that cross sections of bundles of hair can be effectively studied using image analysis. These studies can help to elucidate morphological differences of hair from one region of the body to another. The purpose of the present investigation was to use image analysis to determine whether morphological differences could be demonstrated between male and female human Caucasian terminal scalp hair.Hair samples were taken from the back of the head from 18 caucasoid males and 13 caucasoid females (Figs. 1-2). Bundles of 50 hairs were processed for cross-sectional examination and then analyzed using Prism Image Analysis software on a Macintosh llci computer. Twenty morphological parameters of size and shape were evaluated for each hair cross-section. The size parameters evaluated were area, convex area, perimeter, convex perimeter, length, breadth, fiber length, width, equivalent diameter, and inscribed radius. The shape parameters considered were formfactor, roundness, convexity, solidity, compactness, aspect ratio, elongation, curl, and fractal dimension.


2000 ◽  
Vol 10 (2) ◽  
pp. 7-9
Author(s):  
Yaser Natour ◽  
Christine Sapienza ◽  
Mark Schmalz ◽  
Savita Collins

Sign in / Sign up

Export Citation Format

Share Document