scholarly journals Force-Velocity Profile of Competitive Kayakers: Evaluation of a Novel Single Kayak Stroke Test

2021 ◽  
Vol 80 (1) ◽  
pp. 49-59
Author(s):  
Milos Petrovic ◽  
Amador Garcia-Ramos ◽  
Danica Janicijevic ◽  
Alejandro Perez-Castilla ◽  
Olivera M. Knezevic ◽  
...  

Abstract The assessment of the force-velocity (F-V) profile in athletes may have important applications for training prescription, injury management, and fatigue monitoring. This study aimed to assess whether a novel single kayak stroke test (SKST) is able to provide the F-V relationship variables (maximum force, maximum velocity and maximum power) of competitive kayakers with acceptable reliability and external validity. Six female (age: 20.3 ± 3.7 years) and eight male (age: 20.8 ± 2.4 years) elite kayakers performed the SKST, bench press, bench pull, and short Wingate kayak test. The individual F-V relationships were highly linear [median r (range): left stroke = 0.986 (0.897 - 0.998); right stroke = 0.987 (0.971 - 0.999)]. The reliability of the F-V relationship parameters obtained during the SKST was high (within-session: CV ≤ 4.48% and ICC ≥ 0.93; between-session: CV ≤ 8.06% and ICC ≥ 0.65). The validity of the F-V relationship parameters obtained during the SKST was generally very high for maximum power (r range = 0.825 - 0.975), high for maximum force during both the bench press and the bench pull (r range = 0.751 - 0.831), and high or moderate for maximal velocity during the bench pull (r = 0.770 - 0.829) and the bench press (r = 0.355 - 0.471), respectively. The SKST can be considered a feasible procedure for testing the maximal upper-body muscle mechanical capacities of kayakers.

Author(s):  
Milos R. Petrovic ◽  
Amador García-Ramos ◽  
Danica N. Janicijevic ◽  
Alejandro Pérez-Castilla ◽  
Olivera M. Knezevic ◽  
...  

Purpose: To test whether the force–velocity (F–V) relationship obtained during a specific single-stroke kayak test (SSKT) and during nonspecific traditional resistance-training exercises (bench press and prone bench pull) could discriminate between 200-m specialists and longer-distance (500- and 1000-m) specialists in canoe sprint. Methods: A total of 21 experienced male kayakers (seven 200-m specialists and 14 longer-distance specialists) participated in this study. After a familiarization session, kayakers came to the laboratory on 2 occasions separated by 48 to 96 hours. In a randomized order, kayakers performed the SSKT in one session and the bench press and bench pull tests in another session. Force and velocity outputs were recorded against 5 loads in each exercise to determine the F–V relationship and related parameters (maximum force, maximum velocity, F–V slope, and maximum power). Results: The individual F–V relationships were highly linear for the SSKT (r = .990 [.908, .998]), bench press (r = .993 [.974, .999]), and prone bench pull (r = .998 [.992, 1.000]). The F–V relationship parameters (maximum force, maximum velocity, and maximum power) were significantly higher for 200-m specialists compared with longer-distance specialists (all Ps ≤ .047) with large effect sizes (≥0.94) revealing important practical differences. However, no significant differences were observed between 200-m specialists and longer-distance specialists in the F–V slope (P ≥ .477). Conclusions: The F–V relationship assessed during both specific (SSKT) and nonspecific upper-body tasks (bench press and bench pull) may distinguish between kayakers specialized in different distances.


2016 ◽  
Vol 32 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Amador García-Ramos ◽  
Slobodan Jaric ◽  
Paulino Padial ◽  
Belén Feriche

This study aimed to (1) evaluate the linearity of the force–velocity relationship, as well as the reliability of maximum force (F0), maximum velocity (V0), slope (a), and maximum power (P0); (2) compare these parameters between the traditional and ballistic bench press (BP); and (3) determine the correlation of F0 with the directly measured BP 1-repetition maximum (1RM). Thirty-two men randomly performed 2 sessions of traditional BP and 2 sessions of ballistic BP during 2 consecutive weeks. Both the maximum and mean values of force and velocity were recorded when loaded by 20–70% of 1RM. All force–velocity relationships were strongly linear (r > .99). While F0 and P0 were highly reliable (ICC: 0.91–0.96, CV: 3.8–5.1%), lower reliability was observed for V0 and a (ICC: 0.49–0.81, CV: 6.6–11.8%). Trivial differences between exercises were found for F0 (ES: < 0.2), however the a was higher for the traditional BP (ES: 0.68–0.94), and V0 (ES: 1.04–1.48) and P0 (ES: 0.65–0.72) for the ballistic BP. The F0 strongly correlated with BP 1RM (r: 0.915–0.938). The force–velocity relationship is useful to assess the upper body maximal capabilities to generate force, velocity, and power.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5835 ◽  
Author(s):  
Jesualdo Cuevas-Aburto ◽  
David Ulloa-Díaz ◽  
Paola Barboza-González ◽  
Luis Javier Chirosa-Ríos ◽  
Amador García-Ramos

Background The aim of this study was to examine whether the addition of very light loads for modeling the force–velocity (F–V) relationship during the bench press (BP) exercise can confirm its experimental linearity as well as to increase the reliability and concurrent validity of the F–V relationship parameters (maximum force (F0), maximum velocity (V0), F–V slope, and maximum power (Pmax)). Method The F–V relationship of 19 healthy men were determined using three different methods: (I) 6-loads free method: six loads performed during the traditional free-weight BP exercise (≈ 1–8–29–39–49–59 kg), (II) 4-loads free method: four loads performed during the traditional free-weight BP exercise (≈ 29–39–49–59 kg), and (III) 4-loads Smith method: four loads performed during the ballistic bench press throw exercise in a Smith machine (≈ 29–39–49–59 kg). Results The linearity of the F–V relationship was very high and comparable for the three F–V methods (p = 0.204; median Pearson’s correlation coefficient (r) = 0.99). The three methods were ranked from the most to the least reliable as follows: 6-loads free (coefficient of variation (CV) range = 3.6–6.7%) > 4-loads Smith (CV range = 4.6–12.4%) > 4-loads free (CV range = 3.8–14.5%). The higher reliability of the 6-loads free method was especially pronounced for F–V slope (CVratio ≥ 1.85) and V0 (CVratio ≥ 1.49) parameters, while the lowest difference in reliability was observed for F0 (CVratio ≤ 1.27). The 6-loads free and 4-loads free methods showed a very high concurrent validity respect to the 4-loads Smith method for F0 and Pmax (r ≥ 0.89), a moderate validity for the F–V slope (r = 0.66–0.82), and a low validity for V0 (r ≤ 0.37). Discussion The routine testing of the F–V relationship of upper-body muscles through the BP exercise should include trials with very light loading conditions to enhance the reliability of the F–V relationship.


1982 ◽  
Vol 243 (3) ◽  
pp. H391-H397 ◽  
Author(s):  
J. Wikman-Coffelt ◽  
H. Refsum ◽  
G. Hollosi ◽  
L. Rouleau ◽  
L. Chuck ◽  
...  

The isolated muscle and purified myofibrillar proteins of canine atria and ventricles were compared relative to force-velocity relations and rate of adenosine 5'-triphosphatase (ATPase) activity as a function of calcium concentrations. The maximal stress development of isolated trabeculae of canine atria was similar to that of canine right ventricular papillary muscles when analyzed at saturating calcium concentrations (7.5 mM); however, stress was less in the atria when studied at normal calcium concentrations (2.5 mM). The maximal velocity of shortening of atrial trabeculae was about 2.3 times higher than that of ventricular muscle. Regulated actomyosin characterized from the myofibrillar proteins of the two tissues gave directionally similar calcium sensitivity. The maximum velocity of shortening for actin-activated atrial myosin of the dog was approximately 1.8 times higher when the latter was analyzed as a function of actin concentration. Both maximal tension of isolated muscle and regulated actomyosin ATPase activity were dependent on calcium concentration.


2019 ◽  
Vol 69 (1) ◽  
pp. 47-58
Author(s):  
Marko Cosic ◽  
Sasa Djuric ◽  
Milena Z. Zivkovic ◽  
Aleksandar Nedeljkovic ◽  
Bojan Leontijevic ◽  
...  

Abstract The force‐velocity (F‐V) relationship observed in multi‐joint tasks proved to be strong and approximately linear. Recent studies showed that mechanical properties of muscles: force (F), velocity (V) and power (P) could be assessed through the F‐V relationship although the testing methods have not been standardized. The aim of the present study was to evaluate and compare F‐V relationships assessed from two tests performed on a modified Smith machine that standardizes kinematics of the movement pattern. Fifteen participants were tested on the maximum performance bench press throws and squat jumps performed against a variety of different loads. In addition, their strength properties were assessed through maximum isometric force (Fiso) and one repetition maximum (1 RM). The observed individual F‐V relationships were exceptionally strong and approximately linear (r = 0.98 for bench press throws; r = 0.99 for squat jumps). F‐V relationship parameter depicting maximum force (F0) revealed high correlations with both Fiso and 1 RM indicating high concurrent validity (p < 0.01). However, the generalizability of F‐V relationship parameters depicting maximum force (F0), velocity (V0) and power (P0) of the tested muscle groups was inconsistent and on average low (i.e. F0; r = ‐0.24) to moderate (i.e. V0 and P0; r = 0.54 and r = 0.64, respectively; both p < 0.05). We concluded that the F‐V relationship could be used for the assessment of arm and leg muscle mechanical properties when standard tests are applied, since the typical outcome is an exceptionally strong and linear F‐V relationship, as well as high concurrent validity of its parameters. However, muscle mechanical properties could be only partially generalized across different tests and muscles.


2019 ◽  
Vol 4 (2) ◽  
pp. 18 ◽  
Author(s):  
Michael Timothy Lane ◽  
Mark Travis Byrd ◽  
Zachary Bell ◽  
Tyler Hurley

Currently there is a lack of research into how women respond to pre-workout supplementation. The effects of supplements on exercise performance in women, specifically to power, must be performed. This study investigated the effects of supplementation on power production and maintenance during a high-intensity cycle ergometry sprint performance, vertical jump performance, and bench press performance in women. It also investigated the effects of supplementation on power production and the maintenance of upper and lower body tasks in women. A total of 23 females (22.9 ± 3.6 years, 175.6 ± 6.5 cm, 86.9 ± 15.1 kg, 19.1 ± 8.4 body fat percentage (BF%) (mean ± std. dev.)) were familiarized with the testing protocol and maximal bench press performances were attained (49.5 ± 15.4kg). Utilizing a double-blind crossover design, subjects completed three trials of: Five countermovement vertical jumps, a high-intensity cycle sprint protocol, which consisted of 10 maximal, five second cycle ergometer sprints. Subjects performed a velocity bench press test, utilizing 80% of their predetermined one repetition maximum (1RM) for 10 sets of three repetitions for maximal speed. For 20 min prior to each trial, the subjects ingested, in a randomized order, a pre-workout supplement (Supp), placebo+150 mg caffeine (Caff), or a placebo (PL). Peak power (PP), mean power (MP), and minimum power (MNP) were recorded for each sprint. Maximal velocity from each set was also recorded. Bike sprint and bench press data were normalized to the placebo trial for analysis. Blood lactate (bLa−) was measured immediately prior to each testing session, within 2 min of the completion of the last cycle sprint and following the bench press test. Bike sprint and bench press testing showed no significant differences through the testing sessions, but did significantly decline over test battery (p < 0.05). Vertical jump performance and lactate levels were not significantly different. Supplementation with a pre-workout supplement or placebo with caffeine 20 min prior to participation showed no positive benefits to performance in female participants.


2015 ◽  
Vol 47 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Amador García-Ramos ◽  
Paulino Padial ◽  
Miguel García-Ramos ◽  
Javier Conde-Pipó ◽  
Javier Argüelles-Cienfuegos ◽  
...  

Abstract The purpose of this study was to determine test–retest reliability for peak barbell velocity (Vpeak) during the bench press (BP) and bench press throw (BPT) exercises for loads corresponding to 20–70% of one-repetition maximum (1RM). Thirty physically active collegiate men conducted four evaluations after a preliminary BP 1RM determination (1RM·bw-1 = 1.02 ± 0.16 kg·kg-1). In counterbalanced order, participants performed two sessions of the BP in one week and two sessions of the BPT in another week. Recovery time between sessions within the same week was 48 hours and recovery time between sessions of different weeks was 120 hours. On each day of evaluation the individual load-velocity relationship at each tenth percentile (20–70% of 1RM) in a Smith machine for the BP or BPT was determined. Participants performed three attempts per load, but only the best repetition (highest Vpeak), registered by a linear position transducer, was analysed. The BPT resulted in a significantly lower coefficient of variation (CV) for the whole load–velocity relationship, compared to the BP (2.48% vs. 3.22%; p = 0.040). Test–retest intraclass correlation coefficients (ICCs) ranged from r = 0.94-0.85 for the BPT and r = 0.91-0.71 for the BP (p < 0.001). The reduction in the biological within-subject variation in BPT exercise could be promoted by the braking phase that obligatorily occurs during a BP executed with light or moderate loads. Therefore, we recommend the BPT exercise for a most accurate assessment of upper-body velocity.


Author(s):  
Erin Feser ◽  
Kyle Lindley ◽  
Kenneth Clark ◽  
Neil Bezodis ◽  
Christian Korfist ◽  
...  

This study established the magnitude of systematic bias and random error of horizontal force-velocity (F-v) profile variables obtained from a 1080 Sprint compared to that obtained from a Stalker ATS II radar device. Twenty high-school athletes from an American football training group completed a 30 m sprint while the two devices simultaneously measured velocity-time data. The velocity-time data were modelled by an exponential equation fitting process and then used to calculate individual F-v profiles and related variables (theoretical maximum velocity, theoretical maximum horizontal force, slope of the linear F-v profile, peak power, time constant tau, and horizontal maximal velocity). The devices were compared by determining the systematic bias and the 95% limits of agreement (random error) for all variables, both of which were expressed as percentages of the mean radar value. All bias values were within 6.32%, with the 1080 Sprint reporting higher values for tau, horizontal maximal velocity, and theoretical maximum velocity. Random error was lowest for velocity-based variables but exceeded 7% for all others, with slope of the F-v profile being greatest at ±12.3%. These results provide practitioners with the information necessary to determine if the agreement between the devices and the magnitude of random error is acceptable within the context of their specific application.


2019 ◽  
Vol 33 (03) ◽  
pp. 133-141
Author(s):  
Ghaith Aloui ◽  
Souhail Hermassi ◽  
Mehrez Hammami ◽  
Nawel Gaamouri ◽  
El Ghali Bouhafs ◽  
...  

Abstract Background Team handball is an intense sport with special requirements on technical and tactical skills as well as physical performance. The ability of handball players to make repeated powerful muscular contractions in pushing and throwing the ball is crucial to success. Objective This study investigated the effects of elastic band training on upper body peak power output, ball throwing velocity, and local muscle volume of junior handball players. Materials and Methods Thirty handball players (a single national-level Tunisian team) were randomly assigned to a control group (CG; n = 15) and an experimental group (EG; n = 15). Pre- and post-interventional measurements included force-velocity tests, one-repetition maximum (1RM) bench press and pull-over strength, ball throwing velocity in three types of throw (jumping shot, 3-step running throw, and standing throw), and anthropometric estimates of limb volumes. The EG additionally performed an elastic band training programme twice a week for 8 weeks immediately before engaging in regular handball training. The control group underwent no additional elastic band training. Results The EG demonstrated greater improvements in absolute and relative peak power (p < 0.001; 49.3 ± 22.9 % and 47.9 ± 24.6 %, respectively), 1RM strength (p < 0.001; 25.3 ± 2.2 % and 44.1 ± 9.0 % for 1RM bench press and pull over, respectively), and throwing velocity in all three types of ball throws (p < 0.001; 25.1–26.1 %), compared to the CG (3.9–4.4 %). Limb volumes increased significantly (p = 0.001, 8.0 ± 7.5 %) in the EG, with no significant change (p = 0.175, 2.6 ± 7.0 %) in the CG. Conclusions We conclude that additional elastic band training performed twice a week for 8 weeks improves measures relevant to game performance, particularly strength, power, and ball throwing velocity.


Sign in / Sign up

Export Citation Format

Share Document