scholarly journals Effects of Inclination of the Plate Embedded in Porous Media on Radiative and Chemically Reactive MHD Convection

2019 ◽  
Vol 8 (4) ◽  
pp. 10239-10245

This work is focused on the numerical study of thermodiffusion, inclination of the plate, order of chemical reaction, Diffusion-thermo and thermal radiation effects on a steady magnetohydrodynamic convective flow over an inclined plate in a porous medium under the influence of viscous dissipation along with the application of heat generation/ absorption effects. The partial differential equations governing the fluid flow are transformed into coupled non dimensional ordinary differential equations with the help of similarity transformations. Suitable codes in MATLAB’s built in solver bvp4c, which is a highly accurate and efficient solver of MATLAB, are developed to solve these coupled ordinary differential equations numerically. The behaviour of the fluid velocity, temperature and species concentration for variations in the various thermo-physical parameters are illustrated via graphs. From the numerical results it is evident that the heat and mass transfer of the fluid are significantly influenced by the order of chemical reaction, thermal radiation, inclination of the plate, Soret and Dufour effects. Results obtained in this paper may be useful in the field of chemical industries, chemical engineering, petroleum engineering. Gas separating instruments can be installed in big cities as an engineering application so that harmful pollutants can be removed which are present in small quantities mixed with air.

2019 ◽  
Vol 97 (6) ◽  
pp. 579-587
Author(s):  
Azad Hussain ◽  
Zainia Muneer ◽  
M.Y. Malik ◽  
Saadia Ghafoor

The present study focuses on the non-Newtonian magnetohydrodynamic flow, under the kinetic postulate, of fluids that are initially liquid past a porous plate in the appearance of thermal radiation effects. Resemblance transfigurations are used to metamorphose the governing equations for temperature and velocity into a system of ordinary differential equations. We then solved these differential equations subject to convenient boundary conditions by using the shooting method along with the Runge–Kutta method. Heat transfer and characteristic flow results are acquired for different compositions of physical parameters. These results are extended graphically to demonstrate interesting attributes of the physics of the problem. Nusselt number and skin friction coefficients are also discussed via graphs and tables for different values of dimensionless parameters. Decline occurs in velocity profile due to escalating values of M. Temperature profile depicts growing behavior due to acceleration in the values of λ and M. Nusselt number and skin friction curves represent rising behavior according to their parameters.


2011 ◽  
Vol 8 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Ali J. Chamkha ◽  
M. F. Al-Amin ◽  
Abdelraheem Aly

This work is focused on the numerical solution of unsteady double-diffusive free convective flow along a vertical isothermal cylinder in the presence of a transverse magnetic field, first-order homogeneous chemical reaction, thermal radiation and Soret and Dufour effects. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are formulated and a numerical solution is obtained by using an explicit finite-difference scheme. The solutions at each time step have been found to reach the steady state solution properly. Representative results for the fluid velocity, temperature and solute concentration profiles as well as the local heat and mass transfer rates for various values of the physical parameters are displayed in both graphical and tabular forms. DOI: http://dx.doi.org/10.3329/jname.v8i1.7250


2019 ◽  
Vol 24 (3) ◽  
pp. 577-590
Author(s):  
A.D.M. Gururaj ◽  
S. Dhanasekar ◽  
V. Parthiban

Abstract MHD slip flow past an extending surface with third type (convective) boundary condition and thermal radiation is analysed. The governing momentum and energy equations are converted into set of nonlinear ordinary differential equations using appropriate similarity transformations. The Fourth-Order Runge-Kutta shooting method is applied for obtaining the numerical solution of the resulting nonlinear ordinary differential equations. The numerical results for velocity and temperature distribution are found for different values of the vital parameters, namely: the magnetic interaction factor, slip factor, convective factor, Prandtl number and radiation factor and are presented graphically, and discussed.


Author(s):  
Vijay Patel ◽  
Jigisha Pandya

In this research paper, the Homotopy Analysis Method is used to investigate the twodimensional electrical conduction of a magneto-hydrodynamic (MHD) Jeffrey Fluid across a stretching sheet under various conditions, such as when electrical current and temperature are both present, and when heat is added in the presence of a chemical reaction or thermal radiation. Applying similarity transformation, the governing partial differential equation is transformed into terms of nonlinear coupled ordinary differential equations. The Homotopy Analysis Method is used to solve a system of ordinary differential equations. The impact of different numerical values on velocity, concentration, and temperature is examined and presented in tables and graphs. The fluid velocity reduces as the retardation time parameter(2) grows, while the fluid velocity inside the boundary layer increases as the Deborah number () increases. The velocity profiles decrease when the magnetic parameter M is increased. The results of this study are entirely compatible with those of a viscous fluid. The Homotopy Analysis Method calculations have been carried out on the PARAM Shavak high-performance computing (HPC) machine using the BVPh2.0 Mathematica tool.


2020 ◽  
Vol 9 (11) ◽  
pp. 9259-9271
Author(s):  
K.R. Babu ◽  
G. Narender ◽  
K. Govardhan

A two-dimensional stream of an magnetohydrodynamics (MHD) Eyring-Powell fluid on a stretching surface in the presence of thermal radiation, viscous dissipation and the Joule heating is analyzed. The flow model in the form of the Partial Differential Equations (PDEs) is transformed into a system of non-linear and coupled Ordinary Differential Equations (ODEs) by implementing appropriate similarity transformations. The resulting ordinary differential equations are solved numerically by the shooting technique with Adams-Moulton Method of fourth order. The numerical solution obtained for the velocity and temperature profiles has been presented through graphs for different choice of the physical parameters. The magnetic field is found to have a direct relation with the temperature profile and an inverse with the velocity profile. Increasing the thermal radiation, the temperature tends to rise.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Noor Saeed Khan ◽  
Poom Kumam ◽  
Raees Khan

AbstractIn this paper, a numerical study of MHD steady flow due to a rotating disk with mixed convection, Darcy Forchheimer’s porous media, thermal radiation, and heat generation/absorption effects are explored. A strong magnetic field is applied in perpendicular direction to the flow which governs the Hall current effects. Homogeneous and heterogeneous reactions are also taken into account. For the simplification of partial differential equations (PDEs) into the nonlinear ordinary differential equations (ODEs), the method of generalized Von Karman similarity transformations is employed, and the resulting non-dimensional ordinary differential equations are solved by using the homotopy analysis method (HAM). Effects of different parameters on the axial, radial and tangential velocity profiles, temperature and concentration of chemical reaction profiles are analyzed and discussed. The present work’s remarkable finding is that with the expansion of nanoparticles size, dimensionless constant parameter, local Grashof number, porosity parameter, Hall current, and suction parameter, the nanofluid radial velocity is enhanced. For the higher values of magnetic field parameter, the tangential velocity and nanofluid temperature are enhanced. The magnetic field parameter and the disk thickness coefficient parameter have similar impacts on the axial velocity profile. Heterogeneous chemical reaction parameter decreases the concentration of chemical reaction profile. The nanoparticles volume fraction increases the concentration of chemical reaction profile. Furthermore, the present results are found to be in excellent agreement with previously published work in tabulated form.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Stanford Shateyi ◽  
Gerald T. Marewo

Abstract We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.


2018 ◽  
Vol 16 ◽  
pp. 109-119
Author(s):  
A.K. Mishra ◽  
N. Senapati ◽  
S.R. Mishra ◽  
S. Bhattacharjee

The purpose of this paper is to investigate steady two-dimensional laminar magnetohydrodynamic (MHD) flow of an incompressible Jeffrey fluid past over a linearly stretching sheet. The governing partial differential equations (PDEs) of continuity, momentum, energy and concentration are transformed into nonlinear coupled ordinary differential equations (ODEs) by using similarity transformations. Then the ODEs are solved by applying Runge-Kutta fourth order method accompanied with shooting technique. The effects of various physical parameters characterizing the flow phenomenon including Deborah number, ratio of relaxation to retardation times, magnetic parameter, porous parameter, Prandtl number, Eckert number, heat source / sink parameter, Schmidt number and chemical reaction parameter on dimensionless velocity, temperature and concentration profiles are analyzed. The numerical results are obtained and presented in graphs. The present results are compared with the earlier published results as a particular case.


In the present work, we have studied the unsteady MHD flow under the action of thermal radiation and chemical reaction at the stagnation point of a rotating sphere. By using similarity transformation, the unsteady non-linear boundary layer equation obtained as a result of heat transfer and mass transfer along with momentum were changed to a set of ordinary differential equations. Through the use of MATLAB’s built in solver bvp4c, the obtained differential equations were solved. Fluid velocity profile along with temperature profile and species concentration profiles are drawn for radiation parameter Ra  and chemical reaction parameter Kr  and the obtained results are discussed.


2020 ◽  
Vol 21 (1) ◽  
pp. 36-45
Author(s):  
G Narender ◽  
Santoshi Misra ◽  
K Govardhan

The main objective of this paper is to focus on a numerical study of chemical reaction and viscous dissipation effects on the steady state boundary layer flow of MHD nanofluid past the horizontally stretching sheet with the existence of nanoparticles. A proper similarity transformation is utilized to convert the boundary layer equations into the nonlinear and coupled ordinary differential equations. These ODEs are sorted out numerically by applying the shooting mechanism. Graphical representations are also included to explain the effect of evolving parameters against the above-mentioned distributions. Significance of different physical parameters on dimensionless velocity, temperature and concentration are elaborated through graphs and tables. For increasing values of Eckert number, the temperature profile increases whereas the chemical reaction parameter increases, the boundary layer thickness decreases. Chemical Engineering Research Bulletin 21(2019) 36-45


Sign in / Sign up

Export Citation Format

Share Document