scholarly journals Effect of Magnetic Field on Thermosolutal Instability of Rotating Ferromagnetic Fluid Under Varying Gravity Field

2021 ◽  
Vol 26 (1) ◽  
pp. 201-214
Author(s):  
S. K. Pundir ◽  
P. K. Nadian ◽  
R. Pundir

AbstractThis paper deals with the theoretical investigation of the effect of a magnetic field, rotation and magnetization on a ferromagnetic fluid under varying gravity field. To find the exact solution for a ferromagnetic fluid layer contained between two free boundaries, we have used a linear stability analysis and normal mode analysis method. For the case of stationary convection, a stable solute gradient has a stabilizing effect, while rotation has a stabilizing effect if λ>0 and destabilizing effect if λ<0. Further, the magnetic field is discovered to have both a stabilizing and destabilizing effect for both λ>0 and λ<0. It is likewise discovered that magnetization has a stabilizing effect for both λ>0 and λ<0 in the absence of the stable solute gradient. Graphs have been plotted by giving numerical values of various parameters. In the absence of rotation, magnetic field and stable solute gradient, the principle of exchange of stabilities is found to hold true for certain conditions.

Author(s):  
Amrish K. Aggarwal ◽  
Anushri Verma

In this paper, the effect of rotation and magnetic field on thermal stability of a layer of ferromagnetic fluid heated from below has been investigated. For a fluid layer between two free boundaries, an exact solution is obtained using a linearized stability theory and normal mode analysis. For the case of stationary convection, it is found that magnetic field and rotation have stabilizing effect on the thermal stability of the system. The principle of exchange of stability is not valid for the problem under consideration, whereas in the absence of rotation and magnetic field, it is valid.


2014 ◽  
Vol 6 (1) ◽  
pp. 24-45
Author(s):  
G. C. Rana

AbstractThe thermosolutal instability of Rivlin-Ericksen elasticoviscous rotating fluid permeated with suspended particles (fine dust) and variable gravity field in porous medium in hydromagnetics is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, gravity field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection, the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions. The effect of rotation, suspended particles, magnetic field, stable solute gradient and medium permeability has also been shown graphically.


2013 ◽  
Vol 18 (2) ◽  
pp. 307-327
Author(s):  
S. Chand

This paper deals with the theoretical investigation of the triple-diffusive convection in a micropolar ferrofluid layer heated and soluted below subjected to a transverse uniform magnetic field in the presence of uniform vertical rotation. For a flat fluid layer contained between two free boundaries, an exact solution is obtained. A linear stability analysis theory and normal mode analysis method have been employed to study the onset convection. The influence of various parameters like rotation, solute gradients, and micropolar parameters (i.e., the coupling parameter, spin diffusion parameter and micropolar heat conduction parameter) on the onset of stationary convection has been analyzed. The critical magnetic thermal Rayleigh number for the onset of instability is also determined numerically for sufficiently large value of the buoyancy magnetization parameter M1 (ratio of the magnetic to gravitational forces). The principle of exchange of stabilities is found to hold true for the micropolar fluid heated from below in the absence of micropolar viscous effect, microinertia, solute gradient and rotation. The oscillatory modes are introduced due to the presence of the micropolar viscous effect, microinertia , solute gradient and rotation, which were non-existent in their absence. In this paper, an attempt is also made to obtain the sufficient conditions for the non-existence of overstability.


1985 ◽  
Vol 40 (8) ◽  
pp. 826-833
Author(s):  
Rajkamal Sanghvi ◽  
R. K. Chhajlani

The Rayleigh-Taylor (RT) instability of a stratified and viscid magnetoplasma including the effects of "finite-resistivity and suspended particles is investigated using normal mode analysis. The horizontal magnetic field and the viscosity of the medium are assumed to be variable. The dispersion relation, which is obtained for the general case on employing boundary conditions appropriate to the case of two free boundaries, is then specialized for the longitudinal and transverse modes. It is found that the criterion of stable stratification remains essentially unchanged and that the unstable stratification for the longitudinal mode can be stabilized for a certain wave number band, whereas the transverse mode remains unstable or all wave numbers which can be stabilized by a suitable choice of the magnetic field for vanishing resistivity. Thus, resistivity is found to have a destabilizing influence on the RT configuration. The growth rates of the unstable RT modes with the kinematic viscosity and the relaxation frequency parameter of the suspended particles have been analytically evaluated. Dust (suspended particles) tends to stabilize the configuration when the medium is considered viscid with infinite conductivity. The kinematic viscosity has a stabilizing influence on the ideal plasma modes.


2013 ◽  
Vol 35 (3) ◽  
pp. 45-56 ◽  
Author(s):  
S.K. Kango ◽  
G.C. Rana ◽  
Ramesh Chand

Abstract The Triple-Diffusive convection in Walters’ (Model B') fluid with varying gravity field is considered in the presence of uniform vertical magnetic field in porous medium. For the case of stationary convection, the magnetic field, varying gravity field and the stable solute gradients have stabilizing effects whereas the medium permeability has destabilizing (or stabilizing) effect on the system under certain conditions. A linear stability analysis theory and normal mode analysis method have been carried out to study the onset convection. The kinematic viscoelasticity has no effect on the stationary convection. The solute gradients, magnetic field, varying gravity field, porosity and kinematic viscoelasticity introduce oscillatory modes in the system, which were non-existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained. The results are also shown graphically.


2014 ◽  
Vol 92 (9) ◽  
pp. 1002-1015 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
W.M. Hasona ◽  
Elsayed M. Abd-Elaziz

In the present paper, we introduce the coupled theory, Lord–Schulman theory, and Green–Lindsay theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fiber-reinforced thermoelasticity subject to thermal loading by a laser pulse. The material is a homogeneous isotropic elastic half-space and is heated by a non-Gaussian laser beam with pulse duration of 8 ps. The method applied here is to use normal mode analysis to solve a thermal shock problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field, rotation, reinforcement, and for two different values of time.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 539-550 ◽  
Author(s):  
Kumar Aggarwal ◽  
Anushri Verma

The purpose of this paper is to study the effects of compressibility, rotation, magnetic field and suspended particles on thermal stability of a layer of visco-elastic Walters? (model) fluid in porous medium. Using linearized theory and normal mode analysis, dispersion relation has been obtained. In case of stationary convection, it is found that the rotation has stabilizing effect on the system. The magnetic field may have destabilizing effect on the system in the presence of rotation while in the absence of rotation it always has stabilizing effect. The medium permeability has destabilizing effect on the system in the absence of rotation while in the presence of rotation it may have stabilizing effect. The suspended particles and compressibility always have destabilizing effect. Due to vanishing of visco-elastic parameter, the compressible visco-elastic fluid behaves like Newtonian fluid. Graphs have also been plotted to depict the stability characteristics. The viscoelasticity, magnetic field and rotation are found to introduce oscillatory modes into the system which were non-existent in their absence.


2019 ◽  
Vol 24 (4) ◽  
pp. 106-124
Author(s):  
H. Kaur ◽  
G.N Verma

Abstract Thermal convection of a rotating dielectric micropolar fluid layer under the action of an electric field and temperature gradient has been investigated. The dispersion relation has been derived using normal mode analysis. The effects of the electric Rayleigh number, micropolar viscosity, Taylor number and Prandtl number on stability and over stability criteria are discussed. It is found that rotation postpones the instability in the fluid layer, while the Prandtl number and rotation both have a stabilizing effect. It is also observed that the micropolar fluid additives have a stabilizing effect, whereas the electric field has a destabilizing effect on the onset of convection stability.


2016 ◽  
Vol 15 (1) ◽  
pp. 88
Author(s):  
G. C. Rana ◽  
R. C. Thakur

Double-diffusive convection in a horizontal layer of nanofluid under rotation heated from below is studied. The nanofluid describes the effects of thermophoresis and Brownian diffusion. Based upon perturbations and linear stability theory, the normal mode analysis method is applied to obtain the dispersion relation characterizing the effect of different parameters when both the boundaries are free. Due to thermal expansion, the nanofluid at the bottom will be lighter than the fluid at the top. Thus, this is a top heavy arrangement which is potentially unstable. In this paper we discuss the influences of various non-dimensional parameters such as rotation, solute gradient, thermo- nanofluid Lewis number, thermo-solutal Lewis number, Soret and Dufour parameter on the stability of stationary convection for the case of free-free boundaries. It is observed that rotation and solute gradient have stabilizing influence on the system. Rotation and solute gradient play important role in the thermal convection of fluid layer and has applications in rotating machineries such as nuclear reactors, petroleum industry, biomechanics etc. and solute gradient finds applications in geophysics, food processing, soil sciences, oil reservoir modeling, oceanography etc. A very good agreement is found between the present paper and earlier published results.


2016 ◽  
Vol 37 (3) ◽  
pp. 3-18 ◽  
Author(s):  
Amrish Kumar Aggarwal ◽  
Anushri Verma

Abstract In this paper, effect of Hall currents on the thermal instability of couple-stress fluid permeated with dust particles has been considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary convection, dust particles and Hall currents are found to have destabilizing effect while couple stresses have stabilizing effect on the system. Magnetic field induced by Hall currents has stabilizing/destabilizing effect under certain conditions. It is found that due to the presence of Hall currents (hence magnetic field), oscillatory modes are produced which were non-existent in their absence.


Sign in / Sign up

Export Citation Format

Share Document