scholarly journals Unsteady MHD Plane Couette-Poiseuille Flow of Fourth-Grade Fluid with Thermal Radiation, Chemical Reaction and Suction Effects

2021 ◽  
Vol 26 (4) ◽  
pp. 77-98
Author(s):  
K.M. Joseph ◽  
E. Ayankop-Andi ◽  
S.U. Mohammed

Abstract This study investigates the unsteady MHD flow of a fourth-grade fluid in a horizontal parallel plates channel. The upper plate is oscillating and moving while the bottom plate is stationary. Solutions for momentum, energy and concentration equations are obtained by the He-Laplace scheme. This method was also used by Idowu and Sani [12] and there is agreement with our results. The effect of various flow parameters controlling the physical situation is discussed with the aid of graphs. Significant results from this study show that velocity and temperature fields increase with the increase in the thermal radiation parameter, while velocity and concentric fields decrease with an increase in the chemical reaction parameter. Furthermore, velocity, temperature and concentric fields decrease with an increase in the suction parameter. It is also interesting to note that when S4 = 0, our results will be in complete agreement with Idowu and Sani [12] results. The results of this work are applicable to industrial processes such as polymer extrusion of dye, draining of plastic films etc.

Author(s):  
M. Ijaz Khan ◽  
F. Alzahrani

This paper analyzes the influence of mixed convective fourth grade nanofluid flow by a stretchable Riga device in the presence variable thermal conductivity and mass diffusivity. Heat and mass transportation are considered with Cattaneo–Christov (CC) model. Thermal radiation and dissipation are also taken in the energy expression. Suitable transformation is employed to reduce partial differential system into nonlinear ordinary system. The governing nonlinear expression is solved via optimal homotopy analysis method. Impact of different physical variables is discussed via graphs. Velocity profile is enhanced for higher values of cross viscous parameter and fourth grade fluid variable. Fluid temperature enhances for higher estimation of thermal relaxation parameter but reverse behavior is seen for solutal concentration variable on nanoparticle concentration.


2002 ◽  
Vol 12 (06) ◽  
pp. 797-811 ◽  
Author(s):  
T. HAYAT ◽  
Y. WANG ◽  
K. HUTTER

The governing nonlinear equation for the unsteady flow of an incompressible fourth grade fluid is modelled. The fluid is also subjected to a magnetic field. In addition, we investigate steady flow between parallel plates with one plate at rest and the other moving parallel to it at constant speed with a suction velocity normal to the plates. Boundary conditions play a significant role. We construct the numerical solution to the sixth order nonlinear differential equation. It is found that the velocity increases with the increase in the material parameters of the fourth grade terms of the fluid.


2019 ◽  
Vol 24 (2) ◽  
pp. 269-293
Author(s):  
A.S. Idowu ◽  
U. Sani

Abstract An analysis was carried out for an unsteady magnetohydrodynamic(MHD) flow of a generalized third grade fluid between two parallel plates. The fluid flow is a result of the plate oscillating, moving and pressure gradient. Three flow problems were investigated, namely: Couette, Poiseuille and Couette-Poiseuille flows and a number of nonlinear partial differential equations were obtained which were solved using the He-Laplace method. Expressions for the velocity field, temperature and concentration fields were given for each case and finally, effects of physical parameters on the fluid motion, temperature and concentration were plotted and discussed. It is found that an increase in the thermal radiation parameter increases the temperature of the fluid and hence reduces the viscosity of the fluid while the concentration of the fluid reduces as the chemical reaction parameter increases.


Author(s):  
A. Shahid ◽  
M. Ali Abbas ◽  
H.L. Huang ◽  
S.R. Mishra ◽  
M.M. Bhatti

The present study analyses the dissipative influence into an unsteady electrically conducting fluid flow embedded in a pervious medium over a shrinkable sheet. The behavior of thermal radiation and chemical reactions are also contemplated. The governing partial differential equations are reformed to ordinary differential equations by operating similarity transformations. The numerical outcomes for the arising non-linear boundary value problem are determined by implementing the Successive linearization method (SLM) via Matlab software. The velocity, temperature, and concentration magnitudes for distant values of the governing parametric quantities are conferred, and their conduct is debated via graphical curves. The surface drag coefficient increases, whereas the local Nusselt number and Sherwood number decreases for enhancing unsteadiness parameter across suction parameter. Moreover, the magnetic and suction parameters accelerate velocity magnitudes while by raising porosity parameter, velocity decelerates. Larger numeric of thermal radiation parameter and Eckert number accelerates the temperature profile while by enhancing Prandtl number it decelerates. Schmidt number and chemical reaction parameters slowdowns the concentration distribution, and the chemical reaction parameter influences on the point of chemical reaction that benefits the interface mass transfer. It is expected that the current achieved results will furnish fruitful knowledge in industrious utilities.


Sign in / Sign up

Export Citation Format

Share Document