scholarly journals Numerical Investigation and Cost Analysis of FRP-Concrete Unidirectional Hybrid Slabs

2021 ◽  
Vol 26 (4) ◽  
pp. 156-166
Author(s):  
Amir Mahboob ◽  
Amir Reza Eskenati ◽  
Soheil Moradalizadeh

Abstract Fiber-reinforced polymer (FRP) has been commonly used to reinforce concrete structures. The kinds of FRP demonstrate an effective alternative to various methods of reinforcement in concrete structures subjected to bad environmental conditions which cause corrosion and damage to concrete. Due to their lightweight, high strength, and high corrosion and fatigue resistance, Fiber Reinforced Polymer (FRP) composites have been widely applied in steel substitution during revitalization interventions. This paper presents numerical three-points bending tests on different models to investigate the effect of the reinforcements; Carbon, Glass, and Aramid fibers to find the corresponding cost of each one. Also, there is an available experimental model for verifying the results of the FEM that demonstrated broad agreement with the experimental statement, concerning the load-displacement curve. After validating the models, alternative designs such as type of the FRP, position of the FRP, and amount of the FRP usage were numerically tested to study the influence of each on the load-bearing capacity. The results showed that the best configuration would be one with GFRP and the load-bearing capacity is around 9 kN in the optimum design.

2013 ◽  
Vol 689 ◽  
pp. 353-357
Author(s):  
Chong Xi Bai ◽  
Xin Yan Shao ◽  
Qiu Ping Wang

The law of stress increment of unbonded carbon fiber reinforced polymer (CFRP) tendons at service stage and flexural load bearing capacity limit state is unclear, so it is difficult to accurately calculate crack width, deflection and load bearing capacity. In order to calculate the stress of CFRP tendons, deformation compatibility condition and moment-curvature analysis method are used to compile nonlinear full-range analysis programs of simply supported concrete beam partially prestressed with unbonded CFRP tendons. The computing results of stress in CFRP tendons are in good agreement with the tested results as a whole, so it indicates that the simulation analysis programs are reliable.


2021 ◽  
Vol 9 (1) ◽  
pp. 41-48
Author(s):  
Samuel Layang

Concrete is one of the materials that is widely used in various structural works because it has advantages, especially it has high compressive strength and is easy to form. However, concrete can also be damaged by physical, chemical, mechanical and excessive loads. Damaged concrete structures must be repaired and strengthened immediately to prevent further damage that can lead to structural failure. One of the materials that can be used for structural reinforcement is Fiber Reinforced Polymer (FRP). FRP is a composite material made of three basic components, namely fiber, polymer and additives. FRP has advantages such as having high strength, light weight, corrosion resistance, easy installation, requiring little or no scaffolding. FRP is very well used to increase the capacity of structures in buildings that are undergoing changes in function


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1667 ◽  
Author(s):  
Dipen Rajak ◽  
Durgesh Pagar ◽  
Pradeep Menezes ◽  
Emanoil Linul

Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 703 ◽  
Author(s):  
Barbara Šubic ◽  
Gorazd Fajdiga ◽  
Jože Lopatič

Modern architecture suggests the use of opened spaces with large transparent envelope surfaces. Therefore, windows of long widths and large heights are needed. In order to withstand the wind loads, such wooden windows can be reinforced with stiffer materials, such as aluminium (Al), glass-fibre reinforced polymer (GFRP), and carbon-fibre reinforced polymer (CFRP). The bending stiffness, load-bearing capacity, and flexural rigidity of hybrid beams, reinforced with aluminium, were compared through experimental analysis, using a four-point bending tests method, with those of reference wooden beams. The largest increases in bending stiffness (29%–39%), load-bearing capacity (33%–45%), and flexural rigidity (43%–50%) were observed in the case of the hybrid beams, with the highest percentage of reinforcements (12.9%—six reinforcements in their tensile and six reinforcements in their compressive zone). The results of the experiments confirmed the high potential of using hybrid beams to produce large wooden windows, for different wind zones, worldwide.


Sign in / Sign up

Export Citation Format

Share Document