scholarly journals Talent identification in soccer using a one-class support vector machine

2019 ◽  
Vol 18 (3) ◽  
pp. 125-136
Author(s):  
S. Jauhiainen ◽  
S. Äyrämö ◽  
H. Forsman ◽  
J-P. Kauppi

Abstract Identifying potential future elite athletes is important in many sporting events. The successful identification of potential future elite athletes at an early age would help to provide high-quality coaching and training environments in which to optimize their development. However, a large variety of different skills and qualities are needed to succeed in elite sports, making talent identification generally a complex and multifaceted problem. Due to the rarity of elite athletes, datasets are inherently imbalanced, making classical statistical inference difficult. Therefore, we approach talent identification as an anomaly detection problem. We trained a nonlinear one-class support vector machine (one-class SVM) on a dataset (N=951) collected from 14-year-old junior soccer players to detect potential future elite players. The mean area under the receiver operating characteristic curve (AUC-ROC) over the tested hyperparameter combinations was 0.763 (std 0.007). The most accurate model was obtained when physical tests, measuring, for example, technical skills, speed, and agility, were used. According to our results, the proposed approach could be useful to support decision-makers in the process of talent identification.

2014 ◽  
Vol 26 (01) ◽  
pp. 1450002 ◽  
Author(s):  
Hanguang Xiao

The early detection and intervention of artery stenosis is very important to reduce the mortality of cardiovascular disease. A novel method for predicting artery stenosis was proposed by using the input impedance of the systemic arterial tree and support vector machine (SVM). Based on the built transmission line model of a 55-segment systemic arterial tree, the input impedance of the arterial tree was calculated by using a recursive algorithm. A sample database of the input impedance was established by specifying the different positions and degrees of artery stenosis. A SVM prediction model was trained by using the sample database. 10-fold cross-validation was used to evaluate the performance of the SVM. The effects of stenosis position and degree on the accuracy of the prediction were discussed. The results showed that the mean specificity, sensitivity and overall accuracy of the SVM are 80.2%, 98.2% and 89.2%, respectively, for the 50% threshold of stenosis degree. Increasing the threshold of the stenosis degree from 10% to 90% increases the overall accuracy from 82.2% to 97.4%. Increasing the distance of the stenosis artery from the heart gradually decreases the overall accuracy from 97.1% to 58%. The deterioration of the stenosis degree to 90% increases the prediction accuracy of the SVM to more than 90% for the stenosis of peripheral artery. The simulation demonstrated theoretically the feasibility of the proposed method for predicting artery stenosis via the input impedance of the systemic arterial tree and SVM.


2020 ◽  
Author(s):  
Zhanyou Xu ◽  
Andreomar Kurek ◽  
Steven B. Cannon ◽  
Williams D. Beavis

AbstractSelection of markers linked to alleles at quantitative trait loci (QTL) for tolerance to Iron Deficiency Chlorosis (IDC) has not been successful. Genomic selection has been advocated for continuous numeric traits such as yield and plant height. For ordinal data types such as IDC, genomic prediction models have not been systematically compared. The objectives of research reported in this manuscript were to evaluate the most commonly used genomic prediction method, ridge regression and it’s equivalent logistic ridge regression method, with algorithmic modeling methods including random forest, gradient boosting, support vector machine, K-nearest neighbors, Naïve Bayes, and artificial neural network using the usual comparator metric of prediction accuracy. In addition we compared the methods using metrics of greater importance for decisions about selecting and culling lines for use in variety development and genetic improvement projects. These metrics include specificity, sensitivity, precision, decision accuracy, and area under the receiver operating characteristic curve. We found that Support Vector Machine provided the best specificity for culling IDC susceptible lines, while Random Forest GP models provided the best combined set of decision metrics for retaining IDC tolerant and culling IDC susceptible lines.


2020 ◽  
Vol 1 (1) ◽  
pp. 40-50
Author(s):  
Atradinal Atradinal ◽  
Risky Syahputra ◽  
Oktarifaldi Oktarifaldi ◽  
Romi Mardela ◽  
Lucy Pratama Putri ◽  
...  

In many sporting events that have been held both nationally and internationally, Indonesia is still ranked below. Observations that have been made on PJOK teachers and trainers have found that they have not been able to identify and develop sports talent optimally by applying science. Research that has been done proves that an athlete is not only born but is also created through an appropriate talent identification program. There are at least two instruments that can be used to identify children's talents, namely I do and I Like. This application I like is online and saves and processes the data of children that we input and then will provide an output in the form of a dominant sport that is suitable for children. While I do in the form of tests of the ability of children with predetermined instruments. This service activity aims to: a) have skills in identifying and developing talent, b) understand and be skilled in using I do and I like instruments as part of talent identification, c) able to implement the management of talent identification instruments in their respective places. The method used uses the principle that every innovation received by PJOK teachers and trainers through PIE (Preparation, Implementation and Evaluation). This means that the delivery of innovations to Partners is taken through the stages of explanation, discussion, practice and evaluation stages are carried out with assistance in the learning and training process


2020 ◽  
Vol 20 (8) ◽  
pp. 592-601
Author(s):  
Zhe Ju ◽  
Shi-Yun Wang

Introduction: Neddylation is a highly dynamic and reversible post-translatiNeddylation is a highly dynamic and reversible post-translational modification. The abnormality of neddylation has previously been shown to be closely related to some human diseases. The detection of neddylation sites is essential for elucidating the regulation mechanisms of protein neddylation.onal modification which has been found to be involved in various biological processes and closely associated with many diseases. The accurate identification of neddylation sites is necessary to elucidate the underlying molecular mechanisms of neddylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict neddylation sites. In this study, a novel predictor named NeddPred is proposed to predict lysine neddylation sites. An effective feature extraction method, bi-profile bayes encoding, is employed to encode neddylation sites. Moreover, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of neddylation sites. As illustrated by 10-fold cross-validation, NeddPred achieves an excellent performance with a Matthew's correlation coefficient of 0.7082 and an area under receiver operating characteristic curve of 0.9769. Independent tests show that NeddPred significantly outperforms existing neddylation sites predictor NeddyPreddy. Therefore, NeddPred can be a complement to the existing tools for the prediction of neddylation sites. A user-friendly web-server for NeddPred is established at 123.206.31.171/NeddPred/. Objective: As the detection of the lysine neddylation sites by the traditional experimental method is often expensive and time-consuming, it is imperative to design computational methods to identify neddylation sites. Methods: In this study, a bioinformatics tool named NeddPred is developed to identify underlying protein neddylation sites. A bi-profile bayes feature extraction is used to encode neddylation sites and a fuzzy support vector machine model is utilized to overcome the problem of noise and class imbalance in the prediction. Results: Matthew's correlation coefficient of NeddPred achieved 0.7082 and an area under the receiver operating characteristic curve of 0.9769. Independent tests show that NeddPred significantly outperforms existing lysine neddylation sites predictor NeddyPreddy. Conclusion: Therefore, NeddPred can be a complement to the existing tools for the prediction of neddylation sites. A user-friendly webserver for NeddPred is accessible at 123.206.31.171/NeddPred/.


2019 ◽  
Vol 11 (22) ◽  
pp. 6323 ◽  
Author(s):  
Pham ◽  
Prakash ◽  
Chen ◽  
Ly ◽  
Ho ◽  
...  

The main objective of this study is to propose a novel hybrid model of a sequential minimal optimization and support vector machine (SMOSVM) for accurate landslide susceptibility mapping. For this task, one of the landslide prone areas of Vietnam, the Mu Cang Chai District located in Yen Bai Province was selected. In total, 248 landslide locations and 15 landslide-affecting factors were selected for landslide modeling and analysis. Predictive capability of SMOSVM was evaluated and compared with other landslide models, namely a hybrid model of the cascade generalization optimization-based support vector machine (CGSVM), individual models, such as support vector machines (SVM) and naïve Bayes trees (NBT). For validation, different quantitative criteria such as statistical based methods and area under the receiver operating characteristic curve (AUC) technique were used. Results of the study show that the SMOSVM model (AUC = 0.824) has the highest performance for landslide susceptibility mapping, followed by CGSVM (AUC = 0.815), SVM (AUC = 0.804), and NBT (AUC = 0.800) models, respectively. Thus, the proposed novel SMOSVM model is a promising method for better landslide susceptibility mapping and prediction, which can be applied also in other landslide prone areas.


2020 ◽  
Vol 34 (07) ◽  
pp. 2050056
Author(s):  
Yongxing Li ◽  
Wenjing Wu ◽  
Xin Guo ◽  
Yu Lin ◽  
Shiguang Wang

Analyzing the characteristics of group behavior, leader-follower model which adopts dynamic group floor field to represent the attraction in a group is used to model pedestrian group behavior. Pedestrian choice model of vertical walking facilities based on support vector machine (SVM) with the effect of group behavior is established. Fusing pedestrian choice model of vertical walking facilities and leader-follower model into a cellular automata (CA)-based pedestrian simulation model, we simulate the pedestrian choice process for vertical walking facilities with the effect of group behavior. The simulation results indicate that with the effect of group behavior, the choice results of some pedestrians are changed, and the efficiency of pedestrians passing is reduced. To some extent, the efficiency of pedestrians passing is improved with the mean distribution of luggage in each group.


Author(s):  
Jie Xu ◽  
Xianglong Liu ◽  
Zhouyuan Huo ◽  
Cheng Deng ◽  
Feiping Nie ◽  
...  

Support Vector Machine (SVM) is originally proposed as a binary classification model, and it has already achieved great success in different applications. In reality, it is more often to solve a problem which has more than two classes. So, it is natural to extend SVM to a multi-class classifier. There have been many works proposed to construct a multi-class classifier based on binary SVM, such as one versus all strategy, one versus one strategy and Weston's multi-class SVM. One versus all strategy and one versus one strategy split the multi-class problem to multiple binary classification subproblems, and we need to train multiple binary classifiers. Weston's multi-class SVM is formed by ensuring risk constraints and imposing a specific regularization, like Frobenius norm. It is not derived by maximizing the margin between hyperplane and training data which is the motivation in SVM. In this paper, we propose a multi-class SVM model from the perspective of maximizing margin between training points and hyperplane, and analyze the relation between our model and other related methods. In the experiment, it shows that our model can get better or compared results when comparing with other related methods.


2021 ◽  
Vol 62 (03) ◽  
pp. e180-e192
Author(s):  
Claudio Díaz-Ledezma ◽  
David Díaz-Solís ◽  
Raúl Muñoz-Reyes ◽  
Jonathan Torres Castro

Resumen Introducción La predicción de la estadía hospitalaria luego de una artroplastia total de cadera (ATC) electiva es crucial en la evaluación perioperatoria de los pacientes, con un rol determinante desde el punto de vista operacional y económico. Internacionalmente, se han empleado macrodatos (big data, en inglés) e inteligencia artificial para llevar a cabo evaluaciones pronósticas de este tipo. El objetivo del presente estudio es desarrollar y validar, con el empleo del aprendizaje de máquinas (machine learning, en inglés), una herramienta capaz de predecir la estadía hospitalaria de pacientes chilenos mayores de 65 años sometidos a ATC por artrosis. Material y Métodos Empleando los registros electrónicos de egresos hospitalarios anonimizados del Departamento de Estadísticas e Información de Salud (DEIS), se obtuvieron los datos de 8.970 egresos hospitalarios de pacientes sometidos a ATC por artrosis entre los años 2016 y 2018. En total, 15 variables disponibles en el DEIS, además del porcentaje de pobreza de la comuna de origen del paciente, fueron incluidos para predecir la probabilidad de que un paciente presentara una estadía acortada (< 3 días) o prolongada (> 3 días) luego de la cirugía. Utilizando técnicas de aprendizaje de máquinas, 8 algoritmos de predicción fueron entrenados con el 80% de la muestra. El 20% restante se empleó para validar las capacidades predictivas de los modelos creados a partir de los algoritmos. La métrica de optimización se evaluó y ordenó en un ranking utilizando el área bajo la curva de característica operativa del receptor (area under the receiver operating characteristic curve, AUC-ROC, en inglés), que corresponde a cuan bien un modelo puede distinguir entre dos grupos. Resultados El algoritmo XGBoost obtuvo el mejor desempeño, con una AUC-ROC promedio de 0,86 (desviación estándar [DE]: 0,0087). En segundo lugar, observamos que el algoritmo lineal de máquina de vector de soporte (support vector machine, SVM, en inglés) obtuvo una AUC-ROC de 0,85 (DE: 0,0086). La importancia relativa de las variables explicativas demostró que la región de residencia, el servicio de salud, el establecimiento de salud donde se operó el paciente, y la modalidad de atención son las variables que más determinan el tiempo de estadía de un paciente. Discusión El presente estudio desarrolló algoritmos de aprendizaje de máquinas basados en macrodatos chilenos de libre acceso, y logró desarrollar y validar una herramienta que demuestra una adecuada capacidad discriminatoria para predecir la probabilidad de estadía hospitalaria acortada versus prolongada en adultos mayores sometidos a ATC por artrosis. Conclusión Los algoritmos creados a traves del empleo del aprendizaje de máquinas permiten predecir la estadía hospitalaria en pacientes chilenos operado de artroplastia total de cadera electiva.


Sign in / Sign up

Export Citation Format

Share Document