scholarly journals Heavy–mineral assemblages from fluvial Pleniglacial deposits of the Piotrków Plateau and the Holy Cross Mountains – a comparative study

Geologos ◽  
2013 ◽  
Vol 19 (1-2) ◽  
pp. 131-146 ◽  
Author(s):  
Lucyna Wachecka-Kotkowska ◽  
Małgorzata Ludwikowska-Kędzia

Abstract The heavy-mineral assemblages of Pleniglacial fluvial sediments were analysed for two river valleys, viz. the Luciąża River (at Kłudzice Nowe) and the Belnianka River (at Słopiec). These sites, on the Piotrków Plateau and in the Holy Cross Mountains respectively, are located in different morphogenetic zones of Poland that were affected to different degrees by the Middle Polish ice sheets. The study was aimed at determining the kind of processes that modified the heavy-mineral assemblages in the two fluvial sediments, at reconstructing the conditions under which these processes took place, and in how far these processes caused changes in the assemblages. The heavy-mineral associations of the parent material was taken as a starting point; this parent material were the sediments left by the Odranian glaciation (Warta stadial = Late Saalian). It was found that heavy-mineral assemblages in the Luciąża valley deposits are varied, particularly if compared with other fluvioglacial Quaternary deposits from the Polish lowlands, with a dominance of garnet. In the fluvial deposits of the Belnianka valley, zircon, staurolite and tourmaline dominate, with minor amounts of amphibole, pyroxene, biotite and garnet. This suggests that the deposits were subject to intensive and/or persistent chemical weathering and underwent several sedimentation/erosion cycles under periglacial conditions. In both valleys chemical weathering and aeolian processes were the main factors that modified the assemblages of the transparent heavy minerals; these processes were largely controlled by the climatic changes during the Pleistocene.

Geologos ◽  
2013 ◽  
Vol 19 (1-2) ◽  
pp. 95-129 ◽  
Author(s):  
Małgorzata Ludwikowska-Kędzia

Abstract The composition of the transparent heavy-mineral assemblages (0.25-0.1 mm) in Quaternary slope, karst, glacial, fluvioglacial and fluvial deposits with different parent material was investigated in the Kielce-Łagów Valley (the central part of the Palaeozoic core of the Holy Cross Mountains). For the purpose, 93 samples of mostly sandy sediments were examined. Some marker and some supporting minerals can be distinguished. Slope and karst deposits are dominated by the abrasion-resistant minerals zircon, tourmaline, staurolite and rutile. This assemblage points at a source consisting of strongly weathered pre-Quaternary bedrock. Glacial and fluvioglacial deposits are dominated by medium-resistant and non-resistant minerals (garnet, amphibole, pyroxene and biotite). The two types of parent material of the heavy minerals are typical of the Quaternary deposits in the Polish uplands. The two sources are most clear in the younger (Vistulian and Holocene), mostly fluvial sediments. The results of the analysis imply that the impact of Pleistocene glaciers on the central part of the Holy Cross Mountains was neither large enough to hide the local mineralogical background, nor sufficient to dominate over the main processes transforming the mineral composition under the variable climatic conditions of the Quaternary, including aeolian processes and chemical weathering.


1979 ◽  
Vol 16 (12) ◽  
pp. 2219-2235 ◽  
Author(s):  
Q. H. J. Gwyn ◽  
A. Dreimanis

Two main source areas of heavy minerals in tills have been defined in the Great Lakes region: a source in the Superior and Southern Provinces and another in the Grenville Province. The Superior–Southern source is typified by low heavy mineral content and high epidote percentage in contrast to the Grenville source which has a high content of heavy minerals of which garnet, tremolite, and to a lesser extent sphene and orthopyroxene are characteristic. The Huron lobe tills have a mineral suite characteristic of the Superior–Southern source. Two subsources can be distinguished in the Superior–Southern area; however, they are too limited in extent to be characteristic of major glacial lobes. Two other subsources have been identified in the Grenville provenance area: a western Grenville subsource containing abundant garnet and having a low purple–red garnet ratio; and an eastern Grenville subsource distinguished by high garnet and tremolite content and a garnet ratio generally greater than one. The western and eastern Grenville subsources are the provenance areas for the tills of the Georgian Bay lobe and the Ontario–Erie lobe respectively. A possible third Grenville subsource in the Adirondack Mountains is distinguished from other Grenville sources by a lower heavy mineral content and more abundant orthopyroxene and magnetic minerals. This assemblage may be characteristic of the southern portion of the Ontario–Erie lobe.


Geologos ◽  
2013 ◽  
Vol 19 (1-2) ◽  
pp. 5-23 ◽  
Author(s):  
Bogusław Marcinkowski ◽  
Elżbieta Mycielska-Dowgiałło

Abstract The composition of heavy-mineral assemblages is one of the main textural features of sediments because they can have significant value for the interpretation of, among others, their depositional environment, their depositional processes, and their stratigraphic position. Distinctive features of heavy minerals include their resistance to chemical weathering and mechanical abrasion, their habit, and their density. These parameters are the most widely used in the heavy-mineral research of Quaternary deposits in Poland, as well as in such research in other countries conducted by Polish scientists. Several other heavy-mineral parameters can also be used in various types of interpretation. It is discussed whether heavy-mineral analysis is decisive in the evaluation of deposits or whether it plays mainly a role that may support evidence obtained by other types of analysis. The attention is mainly devoted to transparent heavy minerals; the significance of opaque heavy minerals for interpretational purposes is only mentioned.


Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 347
Author(s):  
Jing Feng ◽  
Wei Wang

Typical barrier-lagoon systems are developed at Dongchong and Xichong on the southern coast of the Dapeng Peninsula of Guangdong, China. This paper studies the evolution of the barrier coasts of the peninsula, using the examples of the Dongchong and Xichong Bays. The Holocene stratigraphic records from borehole drilling on the coast of Dongchong and Xichong show that lagoon sediments are overlaid with beach deposits, indicating that the barriers migrated landward and climbed over the lagoon sediments when the shoreface retreated during the Holocene transgression, reaching the present positions after 7–8 ka BP. Heavy mineral analysis in this paper shows that: (1) the ancient beach sediments of the two bays have the same heavy mineral assemblages, which are different from those of modern beaches; (2) the present beaches of the two bays have different heavy mineral assemblages, even they are located less than 3000 m from each other on the same coast. This supports the hypothesis that the barriers originally came from the inner shelves during the Holocene transgression, but draws a new conclusion that the source of the beach sediments changed to inland rivers over the last thousand years because of a lack of sediment source from the sea floor.


1935 ◽  
Vol 72 (8) ◽  
pp. 341-350
Author(s):  
J. T. Stark ◽  
F. F. Barnes

The correlation of isolated outcrops of igneous rocks where two or more similar intrusions are exposed is a difficult problem which is not always solved by thin sections or field studies. Such a problem was encountered in mapping the closely related Pikes Peak and Silver Plume granites of pre-Cambrian age in the Sawatch Range of central Colorado (Fig. 1). A comparison of the heavy minerals of the isolated outcrops with those of known granites was undertaken; and for this purpose large samples, suitable for crushing and heavy mineral analysis, were collected from various points within the areas of each batholith, and from the small outcrops whose age was in question. It was hoped that sufficient similarities in the heavy mineral assemblages might be established to be of value in making correlations. Furthermore, as work on the heavy minerals in igneous rocks is still in the experimental stage, a series of analyses from various parts of a given batholith should throw some light on the question of whether heavy minerals may be distinct and constant enough to be characteristic and so give a reliable means of correlation of isolated exposures.


2021 ◽  
Vol 91 (6) ◽  
pp. 551-570
Author(s):  
Gabriella Obbágy ◽  
István Dunkl ◽  
Sándor Józsa ◽  
Lóránd Silye ◽  
Róbert Arató ◽  
...  

ABSTRACT Recent developments in geoanalytics have led to the rapidly increasing potential of sedimentary provenance analysis in paleogeographic reconstructions. Here we combine standard methods (petrography, zircon U-Pb geochronology, optical heavy-mineral identification) with modern techniques such as automated Raman-spectroscopic identification of heavy minerals and detrital apatite and titanite U-Pb geochronology. The resulting multi-parameter dataset enables the reconstruction of tectonic and paleogeographic environments to an as-yet unprecedented accuracy in space and time. The Paleogene siliciclastic formations of our study area, the Transylvanian Basin, represent an intensely changing sedimentary environment comprising three transgressive–regressive cycles on a simultaneously moving and rotating tectonic plate. We identified six major source components of the Paleogene sediments and outlined the paleo-drainage patterns for the three cycles, respectively. According to our data these components include: 1) pre-Variscan basement units of the nappes, 2) Variscan granitoids, 3) Permo-Triassic felsic volcanic rocks, 4) Jurassic ophiolites, 5) Upper Cretaceous granodiorites, and 6) Priabonian to Rupelian (37–30 Ma) intermediate magmatites, the latter representing newly recognized formations in the region. Abrupt paleographic changes can be directly deduced from the obtained dataset. The first phase of the Paleogene siliciclastic sequence is composed of mostly Southern Carpathian–derived sediments, to which Jurassic ophiolite detritus of the Apuseni Mts. was added during the second phase, while the siliciclastic material of the third phase represents mainly recycled material from the second phase. According to the detected diagnostic heavy-mineral associations, U-Pb age components and the positions of the potential source areas a set of provenance maps are presented.


1939 ◽  
Vol 76 (7) ◽  
pp. 297-309 ◽  
Author(s):  
Frank Smithson

In recent years much work has been done in determining the quantitative—or more strictly “numerical”—composition of heavy mineral residues from sedimentary rocks in the hope of obtaining evidence as to whence the detritus was derived. It is clear that the petrological characteristics of the land mass whose erosion provides the detritus must always be an important factor in predetermining the percentage composition of the residue as we now find it. Yet the sorting action of the transporting agents (which tend to separate the heavy from the less heavy minerals) and of chemical agents (which, both before and after deposition, destroy some minerals and introduce new ones) may often be suspected of having a great or even a dominating influence upon the final composition of the residue. It is proposed in this paper to investigate by simple mathematical methods the probable effect of these processes and to do so along lines which have been suggested by the study of actual heavy mineral assemblages.


2020 ◽  
Vol 27 (1-2) ◽  
Author(s):  
David Buriánek ◽  
Jiří Svatuška

Detailed morphological and chemical studies of heavy minerals from two localities fluvial sediments in the area of the khantaishir ophiolitic complex near the towns Altai and Khaliun (Southwestern Mongolia) allowed the interpretation possible source region for the gold. The heavy mineral spectrum from the sediments near the Altai town is dominated by magnetite (32 %), chromite (27 %), epidote (11 %), apatite (6 %), and clinopyroxene (5 %). We assume that these minerals come from the ultrabasic and basic igneous rocks in the Neoproterozoic khantaishir ophiolitic complex. The relatively undeformed and three-dimensional shape of gold particles indicating short distance their transport. Rare is native gold enclosed in dolomite or quartz, which indicates that potential gold sources are listvenite. The heavy mineral spectrum from the fluvial sediments in the small creek near the Khaliun town is different. The studied sample includes magnetite (31 %), amphibole (19 %), zircon (18 %), pyrite (13 %), apatite (5 %), epidote (4 %), titanite (4 %), clinopyroxene (2 %), monazite (1 %), ilmenite (1 %), garnet (1 %), and barite (0.1 %). Large variations in the mineral composition heavy mineral spectrum indicate a wide source area which includes basic to intermediate igneous rocks Cambrian-Ordovician Ikh-Mongol Arc System and medium-grade metamorphic rocks (metapelite). The subspherical rounded shape of the gold particles indicates fluvial transport. In the case of small and geologically simple drainage area as creek near the Altai town represents heavy minerals a good tool for determination of the origin of placer gold. There is a contrast between the heavy mineral spectrum from the localities near the Altai and Khaliun towns. The shape of gold particles as well as a simple heavy mineral spectrum from sediments near the Altai indicates short transport from the limited draining area (approximately 6 km2). Gold probably originating from the ultramafic rocks (listvenite), according to associated dolomite and simple spectrum of heavy minerals. Whereas the origin of gold from the placer deposits near Khalinun remains unclear and most probably could originate from the hydrothermal veins in intermediate or basic igneous rocks (presence of barite associated with abundant pyrite).


2007 ◽  
Vol 56 (3) ◽  
pp. 186-211 ◽  
Author(s):  
Andreas Gerth ◽  
Raimo Becker-Haumann

Abstract. The Lower Pleistocene meltwater deposits at the contact of the Rhine- and Illergalcier (Baden-Württemberg, Bavaria) and the periglacial sediments occurring below them are described. The research is focused on the analysis of the petrography of the pebble-size fraction and of the sand-size heavy mineral assemblages of the Biber-, Donau- and Günz-age deposits. The results confirm that the periglacial sediments can be distinguished clearly from the glaciofluvial material by arguments of the petrography. However, a systematic change of the lithology also within the glaciofluvial material can be inferred from the high number of the investigated samples. Within the gravel fraction the amount of crystalline rocks, radiolarite and hornstone increases towards the younger accumulation units, whereas the content of calcareous components decreases. Concerning the heavy minerals the amount of instable minerals as Garnet and Hornblende decreases, while the portion of Staurolite increases remarkably towards the younger deposits. In the paper at hand these results are interpreted with respect to the paleogeography, in order to figure out the river development of the Riß-Iller-tract.


2020 ◽  
Vol 66 (3) ◽  
pp. 185-197
Author(s):  
S. I. Bankole ◽  
A. Akinmosin ◽  
T. Omeru ◽  
H. E. Ibrahim

AbstractHeavy mineral component of 13 samples from the Lokoja and Patti Formations, Bida Basin have been studied for their textural characteristics, compositional abundance, maturity and provenance determinations. The suite of heavy minerals encountered is classified as opaque and non-opaque constituents. The non-opaque components include zircon, tourmaline, rutile, garnet, staurolite, epidote, kyanite, titanite, lawsonite, cassiterite, sillimanite, hornblende, hypersthene and andalusite. The assemblage is generally dominated by zircon and tourmaline in the two formations. The constituent heavy minerals identified are dominated by ultra-stable and stable classes, whereas the ZTR indices indicate mineralogical immaturity coupled with textural immaturity of the constituent grains. This suggests the possible dominance of chemical weathering of the source rock. The suites of minerals recovered have been linked to both metamorphic and non-metamorphic crystalline rock origins.


Sign in / Sign up

Export Citation Format

Share Document