scholarly journals Těžké minerály rozsypových ložisek zlata vázaných na khantaishirský ofiolitový komplex poblíž měst Altaj a Khaliun (jihozápadní Mongolsko)

2020 ◽  
Vol 27 (1-2) ◽  
Author(s):  
David Buriánek ◽  
Jiří Svatuška

Detailed morphological and chemical studies of heavy minerals from two localities fluvial sediments in the area of the khantaishir ophiolitic complex near the towns Altai and Khaliun (Southwestern Mongolia) allowed the interpretation possible source region for the gold. The heavy mineral spectrum from the sediments near the Altai town is dominated by magnetite (32 %), chromite (27 %), epidote (11 %), apatite (6 %), and clinopyroxene (5 %). We assume that these minerals come from the ultrabasic and basic igneous rocks in the Neoproterozoic khantaishir ophiolitic complex. The relatively undeformed and three-dimensional shape of gold particles indicating short distance their transport. Rare is native gold enclosed in dolomite or quartz, which indicates that potential gold sources are listvenite. The heavy mineral spectrum from the fluvial sediments in the small creek near the Khaliun town is different. The studied sample includes magnetite (31 %), amphibole (19 %), zircon (18 %), pyrite (13 %), apatite (5 %), epidote (4 %), titanite (4 %), clinopyroxene (2 %), monazite (1 %), ilmenite (1 %), garnet (1 %), and barite (0.1 %). Large variations in the mineral composition heavy mineral spectrum indicate a wide source area which includes basic to intermediate igneous rocks Cambrian-Ordovician Ikh-Mongol Arc System and medium-grade metamorphic rocks (metapelite). The subspherical rounded shape of the gold particles indicates fluvial transport. In the case of small and geologically simple drainage area as creek near the Altai town represents heavy minerals a good tool for determination of the origin of placer gold. There is a contrast between the heavy mineral spectrum from the localities near the Altai and Khaliun towns. The shape of gold particles as well as a simple heavy mineral spectrum from sediments near the Altai indicates short transport from the limited draining area (approximately 6 km2). Gold probably originating from the ultramafic rocks (listvenite), according to associated dolomite and simple spectrum of heavy minerals. Whereas the origin of gold from the placer deposits near Khalinun remains unclear and most probably could originate from the hydrothermal veins in intermediate or basic igneous rocks (presence of barite associated with abundant pyrite).

Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 445
Author(s):  
Dorota Chmielowska ◽  
Dorota Salata

This study is focused on the loess-like deposits accumulated on glaciofluvial fans of the Czarny Dunajec River in the Orava Basin (Southern Poland). The deposition of these sediments took place during three cold intervals of the Pleistocene: Würm, Riss, and Günz/Mindel. So far, the provenance and age of the deposits has not been precisely defined, even though the development of each fan is believed to be related to the successive glacial periods in the Tatra Mountains. Heavy minerals were studied to determine the source of the deposits. Heavy mineral analyses revealed that zircon, tourmaline, rutile, garnet, amphibole, epidote, and apatite are the typical constituents of the heavy mineral fraction. Abundances of heavy minerals differ in each of the Pleistocene fans of the Czarny Dunajec River, especially the amphibole content. However, the chemical composition of garnet, amphibole, and tourmaline is rather uniform. This research showed that mainly medium-grade metamorphic rocks with a subordinate share of high-grade metamorphics, and granitic rocks are the dominant source rocks of the deposits studied. Such rocks are exposed in the Western Tatra Mountains, which most probably supplied the Orava Basin with clastic material. Change in abundances of heavy minerals in the succession may reflect the progressive erosion of the source area. Grain-size distribution and textural features of the sampled sediments suggest fluvial and aeolian modes of transportation. Additionally, this study indicated that heavy minerals may be used to correlate the loess covers in the Orava Basin.


1935 ◽  
Vol 72 (8) ◽  
pp. 341-350
Author(s):  
J. T. Stark ◽  
F. F. Barnes

The correlation of isolated outcrops of igneous rocks where two or more similar intrusions are exposed is a difficult problem which is not always solved by thin sections or field studies. Such a problem was encountered in mapping the closely related Pikes Peak and Silver Plume granites of pre-Cambrian age in the Sawatch Range of central Colorado (Fig. 1). A comparison of the heavy minerals of the isolated outcrops with those of known granites was undertaken; and for this purpose large samples, suitable for crushing and heavy mineral analysis, were collected from various points within the areas of each batholith, and from the small outcrops whose age was in question. It was hoped that sufficient similarities in the heavy mineral assemblages might be established to be of value in making correlations. Furthermore, as work on the heavy minerals in igneous rocks is still in the experimental stage, a series of analyses from various parts of a given batholith should throw some light on the question of whether heavy minerals may be distinct and constant enough to be characteristic and so give a reliable means of correlation of isolated exposures.


2020 ◽  
Vol 90 (12) ◽  
pp. 1747-1769
Author(s):  
Xavier Coll ◽  
David Gómez-Gras ◽  
Marta Roigé ◽  
Antonio Teixell ◽  
Salva Boya ◽  
...  

ABSTRACT In the Jaca foreland basin (southern Pyrenees), two main sediment routing systems merge from the late Eocene to the early Miocene, providing an excellent example of interaction of different source areas with distinct petrographic signatures. An axially drained fluvial system, with its source area located in the eastern Central Pyrenees, is progressively replaced by a transverse-drained system that leads to the recycling of the older turbiditic foredeep. Aiming to provide new insights into the source-area evolution of the Jaca foreland basin, we provide new data on heavy-mineral suites, from the turbiditic underfilled stage to the youngest alluvial-fan systems of the Jaca basin, and integrate the heavy-mineral signatures with available sandstone petrography. Our results show a dominance of the ultrastable Ap-Zrn-Tur-Rt assemblage through the entire basin evolution. However, a late alluvial sedimentation stage brings an increase in other more unstable heavy minerals, pointing to specific source areas belonging to the Axial and the North Pyrenean Zone and providing new insights into the response of the heavy-mineral suites to sediment recycling. Furthermore, we assess the degree of diagenetic overprint vs. provenance signals and infer that the loss of unstable heavy minerals due intrastratal dissolution is negligible at least in the Peña Oroel and San Juan de la Peña sections. Finally, we provide new evidence to the idea that during the late Eocene the water divide of the transverse drainage system was located in the North Pyrenean Zone, and areas constituted by the Paleozoic basement were exposed in the west-Central Pyrenees at that time. Our findings provide new insights into the heavy-mineral response in recycled foreland basins adjacent to fold-and-thrust belts.


1982 ◽  
Vol 119 (5) ◽  
pp. 463-476 ◽  
Author(s):  
A. C. Morton

SummaryThree heavy mineral associations have been recognized in Palaeogene sands from the Hampshire Basin: one typical of the Scottish Highlands to the north, one of the Armorican massif to the south, and one characteristic of the Cornubian massif to the west. These associations interplay throughout the sequence to produce 10 heavy mineral units correlatable over the basin. The bases of several of the units correspond to commonly accepted time-surfaces and encourage correlation between areas showing strong facies variation. Transgressive units are dominated by Scottish-type material, regressive units by Armorican or Cornubian detritus. There is a relationship between local source area uplift and regression, the main reason for which is that the widespread transgressions submerged or otherwise cut off more local sediment sources, allowing input from the Scottish Highlands, a positive feature throughout much of Tertiary time, to dominate.


Geologos ◽  
2013 ◽  
Vol 19 (1-2) ◽  
pp. 131-146 ◽  
Author(s):  
Lucyna Wachecka-Kotkowska ◽  
Małgorzata Ludwikowska-Kędzia

Abstract The heavy-mineral assemblages of Pleniglacial fluvial sediments were analysed for two river valleys, viz. the Luciąża River (at Kłudzice Nowe) and the Belnianka River (at Słopiec). These sites, on the Piotrków Plateau and in the Holy Cross Mountains respectively, are located in different morphogenetic zones of Poland that were affected to different degrees by the Middle Polish ice sheets. The study was aimed at determining the kind of processes that modified the heavy-mineral assemblages in the two fluvial sediments, at reconstructing the conditions under which these processes took place, and in how far these processes caused changes in the assemblages. The heavy-mineral associations of the parent material was taken as a starting point; this parent material were the sediments left by the Odranian glaciation (Warta stadial = Late Saalian). It was found that heavy-mineral assemblages in the Luciąża valley deposits are varied, particularly if compared with other fluvioglacial Quaternary deposits from the Polish lowlands, with a dominance of garnet. In the fluvial deposits of the Belnianka valley, zircon, staurolite and tourmaline dominate, with minor amounts of amphibole, pyroxene, biotite and garnet. This suggests that the deposits were subject to intensive and/or persistent chemical weathering and underwent several sedimentation/erosion cycles under periglacial conditions. In both valleys chemical weathering and aeolian processes were the main factors that modified the assemblages of the transparent heavy minerals; these processes were largely controlled by the climatic changes during the Pleistocene.


2002 ◽  
Vol 727 ◽  
Author(s):  
S. Ichikawa ◽  
T. Akita ◽  
M. Okumura ◽  
M. Haruta ◽  
K. Tanaka

AbstractThe catalytic properties of nanostructured gold catalyst are known to depend on the size of the gold particles and to be activated when the size decreases to a few nanometers. We investigated the size dependence of the three-dimensional nanostructure on the mean inner potential of gold catalysts supported on titanium oxide using electron holography and high-resolution electron microscopy (HREM). The contact angle of the gold particles on the titanium oxide tended to be over 90° for gold particles with a size of over 5 nm, and below 90° for a size of below 2 nm. This decreasing change in the contact angle (morphology) acts to increase the perimeter and hence the area of the interface between the gold and titanium oxide support, which is considered to be an active site for CO oxidation. The mean inner potential of the gold particles also changed as their size decreased. The value of the inner potential of gold, which is approximately 25 V in bulk state, rose to over 40 V when the size of the gold particles was less than 2 nm. This phenomenon indicates the existence of a charge transfer at the interface between gold and titanium oxide. The 3-D structure change and the inner potential change should be attributed to the specific electronic structure at the interface, owing to both the “nano size effect” and the “hetero-interface effect.”


Author(s):  
Yu Zhou ◽  
Chen Xuedong ◽  
Fan Zhichao ◽  
Jie Dong

Creep failure is one of the most important failure modes in the design of hydroprocessing reactors at elevated temperatures, and the accurate prediction of the creep behavior in structural discontinuities is a critical issue for component design. A physically-based continnum damage mechanics (CDM) model was adopted to describe all three creep stages of 2.25Cr-1Mo-0.25V ferritic steel widely used in manufacturing modern hydroprocessing reactors. The material constants in the damage constitutive equations were identified using an efficient optimization scheme based on genetic algorithm (GA). The user-defined subroutine implementing the CDM model was developed using user programmable features (UPFs) in ANSYS. Three-dimensional finite element analysis of the hydroprocessing reactor was conducted to determine the critical regions, and the studies on the stress redistribution and the prediction of damage evolution in these regions during creep were carried out. The results show that FE modelling based on CDM theory can provide a good tool for creep design of complex engineering components.


2021 ◽  
Author(s):  
Ramtin Sabeti ◽  
Mohammad Heidarzadeh

<p>Landslide-generated waves have been major threats to coastal areas and have led to destruction and casualties. Their importance is undisputed, most recently demonstrated by the 2018 Anak Krakatau tsunami, causing several hundred fatalities. The accurate prediction of the maximum initial amplitude of landslide waves (<em>η<sub>max</sub></em>) around the source region is a vital hazard indicator for coastal impact assessment. Laboratory experiments, analytical solutions and numerical modelling are three major methods to investigate the (<em>η<sub>max</sub></em>). However, the numerical modelling approach provides a more flexible and cost- and time-efficient tool. This research presents a numerical simulation of tsunamis due to rigid landslides with consideration of submerged conditions. In particular, this simulation focuses on studying the effect of landslide parameters on <em>η<sub>max</sub>.</em> Results of simulations are compared with our conducted physical experiments at the Brunel University London (UK) to validate the numerical model.</p><p>We employ the fully three-dimensional computational fluid dynamics package, FLOW-3D Hydro for modelling the landslide-generated waves. This software benefit from the Volume of Fluid Method (VOF) as the numerical technique for tracking and locating the free surface. The geometry of the simulation is set up according to the wave tank of physical experiments (i.e. 0.26 m wide, 0.50 m deep and 4.0 m). In order to calibrate the simulation model based on the laboratory measurements, the friction coefficient between solid block and incline is changed to 0.41; likewise, the terminal velocity of the landslide is set to 0.87 m/s. Good agreement between the numerical solutions and the experimental results is found. Sensitivity analyses of landslide parameters (e.g. slide volume, water depth, etc.) on <em>η<sub>max </sub></em>are performed. Dimensionless parameters are employed to study the sensitivity of the initial landslide waves to various landslide parameters.</p>


1980 ◽  
Vol 17 (2) ◽  
pp. 244-253
Author(s):  
John Edward Callahan

Stream sediments from a 13 000 km2 previously glaciated area in central Labrador near Churchill Falls were examined for their heavy mineral content. The minus 0.25 mm (60 mesh) nonmagnetic heavy mineral fraction from 846 stream sediment samples consists mainly of magnetite, ilmenite. garnet, hornblende, epidote and minor clinopyroxene, orthopyroxene. kyanite. sillimanite, biotite. apatite, and zircon. Changes in the frequency distribution of epidote, hornblende, garnet, and sillimanite in the stream sediments correspond well with those reported in previously mapped underlying bedrock lithologies. The occurrence of kyanite and sillimanite, high concentrations of garnet and opaques (mainly ilmenite), and lower concentrations of hornblende and epidote were used to determine grades of regional metamorphism, resulting in revision of the geologic map of this area. Heavy minerals in glacial drift or fluvial deposits may be useful as an aid in mapping in glaciated areas.


Sign in / Sign up

Export Citation Format

Share Document