Paleogeographic implications of a multi-parameter Paleogene provenance dataset (Transylvanian Basin, Romania)

2021 ◽  
Vol 91 (6) ◽  
pp. 551-570
Author(s):  
Gabriella Obbágy ◽  
István Dunkl ◽  
Sándor Józsa ◽  
Lóránd Silye ◽  
Róbert Arató ◽  
...  

ABSTRACT Recent developments in geoanalytics have led to the rapidly increasing potential of sedimentary provenance analysis in paleogeographic reconstructions. Here we combine standard methods (petrography, zircon U-Pb geochronology, optical heavy-mineral identification) with modern techniques such as automated Raman-spectroscopic identification of heavy minerals and detrital apatite and titanite U-Pb geochronology. The resulting multi-parameter dataset enables the reconstruction of tectonic and paleogeographic environments to an as-yet unprecedented accuracy in space and time. The Paleogene siliciclastic formations of our study area, the Transylvanian Basin, represent an intensely changing sedimentary environment comprising three transgressive–regressive cycles on a simultaneously moving and rotating tectonic plate. We identified six major source components of the Paleogene sediments and outlined the paleo-drainage patterns for the three cycles, respectively. According to our data these components include: 1) pre-Variscan basement units of the nappes, 2) Variscan granitoids, 3) Permo-Triassic felsic volcanic rocks, 4) Jurassic ophiolites, 5) Upper Cretaceous granodiorites, and 6) Priabonian to Rupelian (37–30 Ma) intermediate magmatites, the latter representing newly recognized formations in the region. Abrupt paleographic changes can be directly deduced from the obtained dataset. The first phase of the Paleogene siliciclastic sequence is composed of mostly Southern Carpathian–derived sediments, to which Jurassic ophiolite detritus of the Apuseni Mts. was added during the second phase, while the siliciclastic material of the third phase represents mainly recycled material from the second phase. According to the detected diagnostic heavy-mineral associations, U-Pb age components and the positions of the potential source areas a set of provenance maps are presented.

1969 ◽  
Vol 17 ◽  
pp. 25-28
Author(s):  
Christian Knudsen ◽  
Thomas Kokfelt ◽  
Troels Aagaard ◽  
Jesper Bartholdy ◽  
Morten Pejrup

The Danish North Sea coast is a dynamic sedimentary environment experiencing erosion, transport and re-deposition of sand along the coast. Because of the natural and economic value of the coastal zone expensive protection measures such as nourishment of the coast are undertaken. The present study utilises provenance analysis techniques developed at the Geological Survey of Denmark and Greenland (GEUS) to characterise the coastal sand bodies by fingerprinting the heavy minerals in the sand. The aims of the study are to test these new methods in an active sedimentary environment and to develop an understanding of transport pathways along the coast. A total of c. 40 samples have been collected and analysed as part of the project. This paper gives an outline of the project and provides examples of the methods used based on six samples from the Husby profile on the west coast of Jylland (Fig. 1). The study is a collaboration project involving GEUS and the Department of Geography and Geology (DGG) at Copenhagen University; GEUS is responsible for the analyses and DGG for sample collection.


2021 ◽  
Vol 61 (2) ◽  
pp. 688
Author(s):  
Stuart Munday ◽  
Anne Forbes ◽  
Brenton Fairey ◽  
Juliane Hennig-Breitfeld ◽  
Tim Breitfeld ◽  
...  

The Early Permian in the onshore Perth Basin has experienced several significant discoveries in the last 8 years. Beginning with the play-opening Waitsia discovery (AWE), this was followed more recently by the Beharra Springs Deep (Beach Energy) and West Erregulla (Strike) discoveries. In addition, Late Permian sands (Dongara and Wagina sandstones) have long been recognised as excellent reservoirs in the basin. This study attempts to better understand the provenance of the Early and Late Permian sediments using automated Raman spectroscopy as a tool to identify variations in heavy mineral assemblages. Automated Raman spectroscopy analysis of heavy minerals minimises operator bias inherent in more traditional optical heavy mineral analyses. These data are integrated with publicly available chemostratigraphy data to enable a better understanding of sediment provenance variations with stratigraphy. In addition, publicly available detrital zircon geochronological data are incorporated to help further understand sediment sources. A transect of wells is investigated, from Arrowsmith-1 in the southernmost extent to Depot Hill-1 and Mt Horner-1 in the north. While the elemental (chemostratigraphy) data suggest some changes in sediment provenance through the Permian of the Perth Basin, the Raman heavy mineral data confirm a number of sediment provenance changes both at key formational boundaries (e.g. top Kingia sandstone) and complex sediment provenance variation within reservoir sandstone units. These results are integrated to demonstrate how sediment provenance holds the key to understanding controls on variable reservoir quality as well as understanding the early infill in this basin.


2021 ◽  
Vol 29 (1) ◽  
pp. 27-40
Author(s):  
Zdeněk Dolníček ◽  
Michaela Krejčí Kotlánová ◽  
Rostislav Koutňák

An electron microprobe study of polished sections prepared from a sample of fine-grained sandstone from the locality Slivotín (Ždánice-Hustopeče Formation, Ždánice Unit, Flysch Belt of the Outer Western Carpathians, Czech Republic) allowed to yield in addition to data on chemical composition also the detailed information on in situ textural relationships of individual minerals. During our study, emphasis was given to accessory phases belonging to the translucent heavy mineral fraction. The detrital garnet (Alm36-82Grs2-45Prp2-22Sps0-15) was extensively dissolved and replaced by calcite cement from its margins and along the cracks. Detrital fluorapatite was dissolved in a similar way, however, dissolution episode was followed by growth of authigenic rims composed of carbonate-fluorapatite. Other observed heavy minerals (zircon, chrome spinel, TiO2 phase, monazite, tourmaline) probably remained unaltered by diagenetic processes. The chemical composition of chrome spinels varies mostly between magnesiochromite and chromite, whereas spinel is very rare. The chemical composition of garnets and chrome spinels is comparable with published data from Czech, Polish and Slovak parts of the Flysch Belt of the Western Carpathians, and indicates the primary source of detrital material in rocks of deeper parts of orogen, characterized especially by the presence of catazonal metamorphites and almost lacking volcanic rocks. Redeposition of heavy minerals from older sediments cannot also be ruled out. The pronounced diagenetic alteration of garnet, if not very scarce in the area of Flysch Belt, could help to explain the earlier observations of wide fluctuations of contents of garnet in heavy mineral concentrates.


2019 ◽  
Vol 484 (1) ◽  
pp. 275-293 ◽  
Author(s):  
L. Caracciolo ◽  
S. Andò ◽  
P. Vermeesch ◽  
E. Garzanti ◽  
R. McCabe ◽  
...  

AbstractThis paper shows how heavy minerals and single-grain varietal studies can be conducted on silt (representing c. 50% of world's sediments) sediments to obtain quantitative data as efficiently as for sand-sized sediments. The analytical workflows include heavy mineral separation using a wide grain-size window (15–355 μ) analysed through integrated optical analysis, Raman spectroscopy, QEMSCAN microscopy and U–Pb dating of detrital zircon. Upper Jurassic–Cretaceous silt-sized sediments from the Mandawa Basin of central-southern Tanzania have been selected for the scope of this research. Raman-aided heavy mineral analysis reveals garnet and apatite to be the most common minerals together with durable zircon, tourmaline and subordinate rutile. Accessory but diagnostic phases are titanite, staurolite, epidote and monazite. Etch pits on garnet and cockscomb features on staurolite document the significant effect of diagenesis on the pristine heavy mineral assemblage. Multivariate statistical analysis highlights a close association among durable minerals (zircon, tourmaline and rutile, ZTR) while garnet and apatite plot alone reflecting independence between the three groups of variables with garnet increasing in Jurassic samples. Raman data for garnet end-member analysis document different associations between Jurassic (richer in A, Bi and Bii types) and Cretaceous (dominant A, Ci and Cii types) samples. U–Pb dating of detrital zircon and their statistical integration with the above-mentioned datasets provide further insights into changes in provenance and/or drainage systems. Metamorphic rocks of the early and late Pan-African orogeny terranes of the Mozambique Belt and those of the Irumide Belt acted as main source of sediment during the Jurassic. Cretaceous sediments record a broadening of the drainage system reaching as far as the Usagran–Ubendian Belt and the Tanzanian Archean Craton.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 273 ◽  
Author(s):  
Sergio Andò

The potential of heavy minerals studies in provenance analysis can be enhanced conspicuously by using a state-of-the-art protocol for sample preparation in the laboratory, which represents the first fundamental step of any geological research. The classical method of gravimetric separation is based on the properties of detrital minerals, principally their grain size and density, and its efficiency depends on the procedure followed and on the technical skills of the operator. Heavy-mineral studies in the past have been traditionally focused on the sand fraction, generally choosing a narrow grain-size window for analysis, an approach that is bound to introduce a serious bias by neglecting a large, and sometimes very large, part of the heavy-mineral spectrum present in the sample. In order to minimize bias, not only the largest possible size range in each sample should be considered, but also, the same quantitative analytical methods should be applied to the largest possible grain-size range occurring in the sediment system down to 5 μm or less, thus including suspended load in rivers, loess deposits, and shallow to deep-marine muds. Wherever the bulk sample cannot be used for practical reasons, we need to routinely analyze the medium silt to medium sand range (15–500 μm) for sand and the fine silt to sand range (5–63 or > 63 μm) for silt. This article is conceived as a practical handbook dedicated specifically to Master and PhD students at the beginning of their heavy-mineral apprenticeship, as to more expert operators from the industry and academy to help improving the quality of heavy-mineral separation for any possible field of application.


1982 ◽  
Vol 119 (5) ◽  
pp. 463-476 ◽  
Author(s):  
A. C. Morton

SummaryThree heavy mineral associations have been recognized in Palaeogene sands from the Hampshire Basin: one typical of the Scottish Highlands to the north, one of the Armorican massif to the south, and one characteristic of the Cornubian massif to the west. These associations interplay throughout the sequence to produce 10 heavy mineral units correlatable over the basin. The bases of several of the units correspond to commonly accepted time-surfaces and encourage correlation between areas showing strong facies variation. Transgressive units are dominated by Scottish-type material, regressive units by Armorican or Cornubian detritus. There is a relationship between local source area uplift and regression, the main reason for which is that the widespread transgressions submerged or otherwise cut off more local sediment sources, allowing input from the Scottish Highlands, a positive feature throughout much of Tertiary time, to dominate.


Geologos ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. 151-162
Author(s):  
Tomasz Zieliński

Abstract The present study revolves around the identification of the stratigraphical boundary between Pleistocene formations that formed prior to the first advance of the Scandinavian ice sheet (Early Pleistocene, i.e., the so-called preglacial) and the overlying, glacially derived deposits (Middle Pleistocene). In particular, it focuses on variation in heavy mineral assemblages, which are an important tool for stratigraphers. The Neogene basement, described here, was most often the source of material that was redeposited by Early Pleistocene rivers. The geological structure and Early Pleistocene palaeogeographical scenarios for various Polish regions are discussed. Moreover, comparisons with other European preglacial formations are carried out. The mineral spectrum of Lower Pleistocene deposits is largely dependent of rocks of the Neogene and Mesozoic basement. If the incision of ancient catchments was into terrigenous rocks, the stratigraphical boundary between preglacial and glacial formations is easily determined with the help of a heavy mineral analysis. As a rule, this coincides with a noticeable change from resistant to non-resistant mineral associations. Such cases are noted for successions in central Poland and eastern England. On the other hand, outcrops of igneous or metamorphic rocks exist within preglacial river catchments in most parts of Europe. They were the local sources of non-resistant heavy minerals long before their glacial supply from the Baltic Shield. In these cases, mineralogical analysis fails in the search for the Early/Middle Pleistocene transition.


Geologos ◽  
2013 ◽  
Vol 19 (1-2) ◽  
pp. 131-146 ◽  
Author(s):  
Lucyna Wachecka-Kotkowska ◽  
Małgorzata Ludwikowska-Kędzia

Abstract The heavy-mineral assemblages of Pleniglacial fluvial sediments were analysed for two river valleys, viz. the Luciąża River (at Kłudzice Nowe) and the Belnianka River (at Słopiec). These sites, on the Piotrków Plateau and in the Holy Cross Mountains respectively, are located in different morphogenetic zones of Poland that were affected to different degrees by the Middle Polish ice sheets. The study was aimed at determining the kind of processes that modified the heavy-mineral assemblages in the two fluvial sediments, at reconstructing the conditions under which these processes took place, and in how far these processes caused changes in the assemblages. The heavy-mineral associations of the parent material was taken as a starting point; this parent material were the sediments left by the Odranian glaciation (Warta stadial = Late Saalian). It was found that heavy-mineral assemblages in the Luciąża valley deposits are varied, particularly if compared with other fluvioglacial Quaternary deposits from the Polish lowlands, with a dominance of garnet. In the fluvial deposits of the Belnianka valley, zircon, staurolite and tourmaline dominate, with minor amounts of amphibole, pyroxene, biotite and garnet. This suggests that the deposits were subject to intensive and/or persistent chemical weathering and underwent several sedimentation/erosion cycles under periglacial conditions. In both valleys chemical weathering and aeolian processes were the main factors that modified the assemblages of the transparent heavy minerals; these processes were largely controlled by the climatic changes during the Pleistocene.


2021 ◽  
pp. 1-13
Author(s):  
Jasper Verhaegen ◽  
Hilmar von Eynatten ◽  
István Dunkl ◽  
Gert Jan Weltje

Abstract Heavy mineral analysis is a long-standing and valuable tool for sedimentary provenance analysis. Many studies have indicated that heavy mineral data can also be significantly affected by hydraulic sorting, weathering and reworking or recycling, leading to incomplete or erroneous provenance interpretations if they are used in isolation. By combining zircon U–Pb geochronology with heavy mineral data for the southern North Sea Basin, this study shows that the classic model of sediment mixing between a northern and a southern source throughout the Neogene is more complex. In contrast to the strongly variable heavy mineral composition, the zircon U–Pb age spectra are mostly constant for the studied samples. This provides a strong indication that most zircons had an initial similar northern source, yet the sediment has undergone intense chemical weathering on top of the Brabant Massif and Ardennes in the south. This weathered sediment was later recycled into the southern North Sea Basin through local rivers and the Meuse, leading to a weathered southern heavy mineral signature and a fresh northern heavy mineral signature, yet exhibiting a constant zircon U–Pb age signature. Thus, this study highlights the necessity of combining multiple provenance proxies to correctly account for weathering, reworking and recycling.


Sign in / Sign up

Export Citation Format

Share Document