scholarly journals Design and Optimization of Levenberg-Marquardt based Neural Network Classifier for EMG Signals to Identify Hand Motions

2013 ◽  
Vol 13 (3) ◽  
pp. 142-151 ◽  
Author(s):  
Muhammad Ibn Ibrahimy ◽  
Rezwanul Ahsan ◽  
Othman Omran Khalifa

This paper presents an application of artificial neural network for the classification of single channel EMG signal in the context of hand motion detection. Seven statistical input features that are extracted from the preprocessed single channel EMG signals recorded for four predefined hand motions have been used for neural network classifier. Different structures of neural network, based on the number of hidden neurons and two prominent training algorithms, have been considered in the research to find out their applicability for EMG signal classification. The classification performances are analyzed for different architectures of neural network by considering the number of input features, number of hidden neurons, learning algorithms, correlation between network outputs and targets, and mean square error. Between the Levenberg-Marquardt and scaled conjugate gradient learning algorithms, the aforesaid algorithm shows better classification performance. The outcomes of the research show that the optimal design of Levenberg-Marquardt based neural network classifier can perform well with an average classification success rate of 88.4%. A comparison of results has also been presented to validate the effectiveness of the designed neural network classifier to discriminate EMG signals.

2010 ◽  
Vol 163-167 ◽  
pp. 2756-2760 ◽  
Author(s):  
Goh Lyn Dee ◽  
Norhisham Bakhary ◽  
Azlan Abdul Rahman ◽  
Baderul Hisham Ahmad

This paper investigates the performance of Artificial Neural Network (ANN) learning algorithms for vibration-based damage detection. The capabilities of six different learning algorithms in detecting damage are studied and their performances are compared. The algorithms are Levenberg-Marquardt (LM), Resilient Backpropagation (RP), Scaled Conjugate Gradient (SCG), Conjugate Gradient with Powell-Beale Restarts (CGB), Polak-Ribiere Conjugate Gradient (CGP) and Fletcher-Reeves Conjugate Gradient (CGF) algorithms. The performances of these algorithms are assessed based on their generalisation capability in relating the vibration parameters (frequencies and mode shapes) with damage locations and severities under various numbers of input and output variables. The results show that Levenberg-Marquardt algorithm provides the best generalisation performance.


Author(s):  
Mohd Azlan Abu ◽  
Syazwani Rosleesham ◽  
Mohd Zubir Suboh ◽  
Mohd Syazwan Md Yid ◽  
Zainudin Kornain ◽  
...  

<span>This paper presents the classification of EMG signal for multiple hand gestures based on neural network. In this study, the Electromyography is used to measure the muscle cell’s electrical activities which is commonly represented in a function time. Every muscle has their own signals, which was produced in every movement. Surface electromyography (sEMG) is used as a non-invasive technique for acquiring the EMG signal. The development of sensors’ detection and measuring the EMG have been improved and have become more precise while maintaining a small size. In this paper, the main objective is to identify the hand gestures based on: (1) Cylindrical Grasp, (2) Supination (Twist Left), (3) Pronation (Twist Right), (4) Resting Hand and (5) Open Hand that are predefined by using Arduino IDE, CoolTerm software and Microsoft Excel before using artificial neural network for classifying purposes in MATLAB. Finally, the extraction of the EMG patterns for each movement went through features extraction of the signals which is used to train the classifier in MATLAB to classify signals in the neural network. The features extracted are using mean absolute value (MAV), median, waveform length (WL) and root mean square (RMS). The Artificial Neural Network (ANN) produced accuracy of 80% for training and testing for 10 hidden neurons layer.</span>


2017 ◽  
Vol 1 (4) ◽  
pp. 271-277 ◽  
Author(s):  
Abdullah Caliskan ◽  
Mehmet Emin Yuksel

Abstract In this study, a deep neural network classifier is proposed for the classification of coronary artery disease medical data sets. The proposed classifier is tested on reference CAD data sets from the literature and also compared with popular representative classification methods regarding its classification performance. Experimental results show that the deep neural network classifier offers much better accuracy, sensitivity and specificity rates when compared with other methods. The proposed method presents itself as an easily accessible and cost-effective alternative to currently existing methods used for the diagnosis of CAD and it can be applied for easily checking whether a given subject under examination has at least one occluded coronary artery or not.


Author(s):  
DANESHWARI I. HATTI ◽  
SAVITRI RAJU ◽  
MAHENDRA M. DIXIT

In digital communication bandwidth is essential parameter to be considered. Transmission and storage of images requires lot of memory in order to use bandwidth efficiently neural network and Discrete cosine transform together are used in this paper to compress images. Artificial neural network gives fixed compression ratio for any images results in fixed usage of memory and bandwidth. In this paper multi-layer feedforward neural network has been employed to achieve image compression. The proposed technique divides the original image in to several blocks and applies Discrete Cosine Transform (DCT) to these blocks as a pre-process technique. Quality of image is noticed with change in training algorithms, convergence time to attain desired mean square error. Compression ratio and PSNR in dB is calculated by varying hidden neurons. The proposed work is designed using MATLAB 7.10. and synthesized by mapping on Vertex 5 in Xilinx ISE for understanding hardware complexity. Keywords - backpropagation, Discrete


2012 ◽  
Vol 22 (05) ◽  
pp. 1250022 ◽  
Author(s):  
NIKOLAY V. MANYAKOV ◽  
NIKOLAY CHUMERIN ◽  
MARC M. VAN HULLE

We propose a complex-valued multilayer feedforward neural network classifier for decoding of phase-coded information from steady-state visual evoked potentials. To optimize the performance of the classifier we supply it with two filter-based feature selection strategies. The proposed approaches could be used for a phase-coded brain–computer interface, enabling to encode several targets using only one stimulation frequency. The proposed classifier is a multichannel one, which distinguishes our approach from the existing single-channel ones. We show that the proposed approach outperforms others in terms of accuracy and length of the data segments used for decoding. We show that the decoding based on one optimally selected channel yields an inferior performance compared to the one based on several features, which supports our argument for a multichannel approach.


Sign in / Sign up

Export Citation Format

Share Document