scholarly journals Long-term Influence of Concrete Surface and Crack Orientation on Self-healing and Ingress in Cracks – Field Observations

2018 ◽  
Vol 58 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Tobias Danner ◽  
Mette Rica Geiker

Abstract This paper presents results from investigations on the long-term influence of concrete surface and crack orientation on ingress in cracks. Five reinforced concrete structures from Norway exposed to either de-icing salts or seawater have been investigated. Concrete cores were taken with and without cracks from surfaces with vertical and horizontal orientation. Carbonation in cracks was found on all de-iced structures, and a crack on a completely horizontal surface appeared to facilitate chloride ingress. Ingress of substances from seawater was found in all cracks from marine exposure. However, the impact of cracks on chloride ingress was unclear. Horizontal cracks on vertical surfaces appeared to facilitate self-healing.

2021 ◽  
Vol 3 (1) ◽  
pp. 72-82
Author(s):  
M. Bekirova ◽  

Problems associated with the joint long-term action of load and aggressive environment, both in limiting and over-limiting states, are studied bad. Such a combination leads to degradation of materials and changes in the stress-strain state of reinforced concrete structures over time. In case of joint action, they can have mutually increasing damaging effect. Among the many environmental influences encountered, the most aggressive in relation to concrete on cement binder is the impact of sulfates, and in relation to steel reinforcement – the impact of chlorides. It is shown that the stress-strain state of reinforced concrete compressed elements with regard to creep and influence of aggressive environment is formed in time. The deformation in concrete and reinforced concrete compressed elements depends on the stress level. If the stresses are less than the long-term strength, the deformations in time are attenuated, when the stresses in concrete are greater than the long-term strength, the deformations increase. Reinforcement restrains deformations in concrete, while corrosive medium increases creep deformations. When solving these problems we encounter internally statically indeterminate systems. The degree of static indeterminacy is greater than in the case of calculation of reinforced concrete structures without taking into account the influence of the external environment. When the process of soaking is considered, it is possible to consider the influence of the external environment as not aggressive. A solution to the problem using the theory of elastic heredity has been obtained, but it can be shown that a solution using other theories - the theory of aging or the hereditary theory of aging - is also possible. The above solution is true for reinforced concrete elements exposed to external influences at a sufficiently mature age, which can be considered one year or more from the date of manufacture of the structure.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 254
Author(s):  
Alinda Dey ◽  
Akshay Vijay Vastrad ◽  
Mattia Francesco Bado ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

The contribution of concrete to the tensile stiffness (tension stiffening) of a reinforced concrete (RC) member is a key governing factor for structural serviceability analyses. However, among the current tension stiffening models, few consider the effect brought forth by concrete shrinkage, and none studies take account of the effect for very long-term shrinkage. The present work intends to tackle this exact issue by testing multiple RC tensile elements (with different bar diameters and reinforcement ratios) after a five-year shrinking time period. The experimental deformative and tension stiffening responses were subjected to a mathematical process of shrinkage removal aimed at assessing its effect on the former. The results showed shrinkage distinctly lowered the cracking load of the RC members and caused an apparent tension stiffening reduction. Furthermore, both of these effects were exacerbated in the members with higher reinforcement ratios. The experimental and shrinkage-free behaviors of the RC elements were finally compared to the values predicted by the CEB-fib Model Code 2010 and the Euro Code 2. Interestingly, as a consequence of the long-term shrinkage, the codes expressed a smaller relative error when compared to the shrinkage-free curves versus the experimental ones.


2015 ◽  
Vol 1111 ◽  
pp. 187-192
Author(s):  
Corina Sosdean ◽  
Liviu Marsavina ◽  
Geert de Schutter

Reinforced concrete (RC) became one of the most widely used modern building materials. In the last decades a great interest has been shown in studying reinforcement corrosion as it became one of the main factors of degradation and loss of structural integrity of RC structures. The degradation process is accelerated in the case of RC structures situated in aggressive environments like marine environments or subjected to de-icing salts. In this paper it is shown how steel corrosion of the embedded rebars occurs and how this affects the service life of reinforced concrete structures. Also, an experimental study regarding the combined effect of carbonation and chloride ingress was realized. Samples with and without rebars were drilled from a RC slab which was stored in the laboratory for two years. Non-steady state migration tests were realized in order to determine the chloride profile, while the carbonation depth was measured using the colorimetric method based on phenolphthalein spraying. It was concluded that carbonation has a significant effect on chloride ingress, increasing it.


2012 ◽  
Vol 446-449 ◽  
pp. 3252-3258
Author(s):  
Jin Yang Zhang ◽  
De Mi Cui ◽  
Lie Min Lv ◽  
Zhi Yang

On the basis of the advantages of low construction cost, remarkable dynamics property, easy cast moulding and more controllable construction, the reinforced concrete construct are widely applied in buildings and main structures of constructions in China. However, the reinforced concrete is found more or less aging after many years’ utilization and erosion from the environment, which will lead to a hidden risk to affect its functions. After technical development for decades, the concrete can assure its durability under normal situation, yet the function would be deteriorated due to the erosion from the complex and harsh environment to make it hardly reach its designed service life. With the assist of CorroWatch erosion monitor system, the concrete structures’ erosion can kept watched on to obtain the depassivation development and information feedback of some key data dynamically and in long term so as to foresee precisely the erosion starting time. The newly cast concrete depassivation frontline is located on concrete surface and will tend to go through the protective layer and penetrate towards rebar as time goes on. Its structure service life can be enhanced with the re-designed durability in terms of the mentioned characters and do well the erosion proof measures.


Author(s):  
Yoshimi Ohta ◽  
Akemi Nishida ◽  
Haruji Tsubota ◽  
Yinsheng Li

Many empirical formulae have been proposed to evaluate the local damage to reinforced concrete structures caused by the impact of rigid projectiles. Most of these formulae have been derived based on impact tests perpendicular to the target structures. To date, few impact tests oblique to the target structures have been conducted. The purpose of this study is to propose a new formula for evaluating the local damage caused by oblique impacts based on experiments and simulations. The new formula is derived by modifying an empirical formulation for normal impact and the agreement with results of past oblique impact tests is discussed.


2008 ◽  
Vol 30 (2) ◽  
pp. 110-129 ◽  
Author(s):  
Emilio Bastidas-Arteaga ◽  
Mauricio Sánchez-Silva ◽  
Alaa Chateauneuf ◽  
Moema Ribas Silva

Sign in / Sign up

Export Citation Format

Share Document