scholarly journals Peculiarities of Alloying Effect on the Eutectic Cementite Behavior Under Hot Rolling

2019 ◽  
Vol 2 (2) ◽  
pp. 289-300
Author(s):  
Tatiana Mironova ◽  
Svetlana Proidak

Abstract Currently, cast iron remains one of the major modern casting materials in metallurgy and machine-building industry and is sure to take the lead in the future. Chilled cast iron has high hardness and wear resistance due to a large number of carbide phases in its structure. However, low ductility and impact hardness essentially limit its applicability in terms of processing. Hot plastic working, under which the eutectic net crushing is observed, appears to be one of the most effective means of the eutectic alloy products shape and microstructure transformation. Chilled cast iron properties fundamentally improve after hot plastic working: ductility, strength and impact hardness increase by 2-3 times on retention of the high hardness factor. Chilled cast iron ductility increase can be attained when using phase transformations in eutectic cementite under lean alloying with carbide forming elements. The purpose of the paper is to study alloying effect on the chilled cast iron ductility as well as eutectic cementite behavior under hot rolling. In the paper hardening and softening of the structural components in chilled cast iron under hot working have been studied. The deformation texture forming in eutectic cementite under hot rolling has been revealed, which is connected with the dynamic softening and depends on the degree and the nature of its alloying. The mechanism and regularities of the phase transformation effect in cementite on its behavior under plastic deformation and on the alloys ductility in general have been studied. In cementite chromium alloying initiates processes, that can be characterized as the pre-precipitation stage of the new phases, and this way it contributes to the cast iron ductility reduction and embrittles cementite. Carbide transformation, that occurs in eutectic cementite under alloying with vanadium, stimulates softening of the alloy and increases its ductility level. Moreover, the multiple glide planes {130},{011},{112} in cementite have been determined. It has been found out, that in supersaturated cementite vanadium carbides precipitation stimulates the extra glide plane {111} occurrence under hot rolling. The essence of the carbide transformation phenomenon is that under hot working there occurs the lubricating effect at the transition of the metastable iron carbide condition, which is strengthened with vanadium supersaturation and mechanical hardening, to a more stable condition due to precipitation of the proeutectoid constituents on the one hand, and because of the dynamic softening processes on the other hand. At that, the autocatalyticity effect is observed: there is precipitation of carbides with hardening and softening, similar to the processes that arise as a result of the superplastic effect induced by phase transformations.

2013 ◽  
Vol 762 ◽  
pp. 747-752
Author(s):  
Pablo Rodriguez-Calvillo ◽  
M. Perez-Sine ◽  
Jürgen Schneider ◽  
Harti Hermann ◽  
Jose María Cabrera ◽  
...  

FeSi steels with and without addition of Al are widely used as electrical steels. To improve the knowledge of the effects by the addition of Si and Al on the hardening and softening under hot rolling conditions, the behaviour of the flow curves in a wide range of temperatures and deformation velocities have been studied.


Applied laser ◽  
2010 ◽  
Vol 30 (1) ◽  
pp. 26-31
Author(s):  
陈长军 Chen Changjun ◽  
张敏 Zhang Min ◽  
张诗昌 Zhang Shichang ◽  
常庆明 Chang Qingming ◽  
苏衍战 Su Yanzhan

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2041
Author(s):  
Janusz Cebulski ◽  
Dorota Pasek ◽  
Bartosz Chmiela ◽  
Magdalena Popczyk ◽  
Andrzej Szymon Swinarew ◽  
...  

The paper presents the results of tests on the corrosion resistance of Fe40Al5Cr0.2TiB alloy after casting, plastic working using extrusion and rolling methods. Examination of the microstructure of the Fe40Al5Cr0.2TiB alloy after casting and after plastic working was performed on an Olympus GX51 light microscope. The stereological relationships of the alloy microstructure in the state after crystallization and after plastic working were determined. The quantitative analysis of the structure was conducted after testing with the EBSD INCA HKL detector and the Nordlys II analysis system (Channel 5), which was equipped with the Hitachi S-3400N microscope. Structure tests and corrosion tests were performed on tests cut perpendicular to the ingot axis, extrusion direction, and rolling direction. As a result of the tests, it was found that the crystallized alloy has better corrosion resistance than plastically processed material. Plastic working increases the intensity of the electrochemical corrosion of the examined alloy. It was found that as-cast alloy is the most resistant to corrosion in a 5% NaCl compared with the alloys after hot extrusion and after hot rolling. The parameters in this study show the smallest value of the corrosion current density and corrosion rate as well as the more positive value of corrosion potential.


1992 ◽  
Vol 27 (13) ◽  
pp. 3487-3496 ◽  
Author(s):  
N. Zárubová ◽  
V. Kraus ◽  
J. Čermák

1970 ◽  
Vol 12 (12) ◽  
pp. 991-993
Author(s):  
G. F. Tikhonov ◽  
A. P. Rukavishnikova

2011 ◽  
Vol 189-193 ◽  
pp. 1176-1179 ◽  
Author(s):  
Li Bin Niu ◽  
Wang Chang Sun ◽  
Mirabbos Hojamberdiev

Hadfield steel matrix composite, reinforced by high-chromium (Cr) cast iron bars, was fabricated by inserting high-Cr alloy flux-cored welding wires into Hadfield steel molten at 1500 °C. The characteristics for water-quenched composite were investigated and compared with those of reference Hadfield steel. The results show that flux-cored welding wires could be melted by heat capacity of Hadfield steel molten and transformed into high-Cr cast iron bar reinforcements after solidification. The reinforcements of water-quenched composite consist of martensite, eutectic M7C3 carbides and residual austenite. With the increasing of impact energy, the impact wear rate of the composite firstly decreases, and then increases slightly, therefore, the composite is more available to the conditions of low and medium impact energy. The reason is it can combine fully advantages of the outstanding toughness of Hadfield steel, and high hardness of high-Cr cast iron.


2013 ◽  
Vol 699 ◽  
pp. 869-874 ◽  
Author(s):  
Shun Myung Shin ◽  
Dong Won Lee ◽  
Sang An Ha ◽  
Jei Pil Wang

Iron and steel scrap have been reused to produce new steel and cast iron in the steelmaking and foundry industry for more than 150 years, but the accumulation of tramp elements contained in steel scrap such as copper, tin, antimony, and arsenic is a major concern. This is primarily because these tramp elements are difficult to remove in conventional steelmaking processes. In particular, the presence of copper during the recycling of steel scrap can cause severe surface cracking during hot rolling (hot shortness), inhibit recrystallization during hot forming, and reduce ductility in deep drawing. For these reasons, considerable efforts have been made in recent decades to develop a technology that can remove copper from ferrous scraps[1-3].


Sign in / Sign up

Export Citation Format

Share Document