scholarly journals Radiolytic synthesis of gold nanoparticles in HEMA-based hydrogels: Potentialities for imaging nanocomposites

Nukleonika ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 165-177
Author(s):  
Katsiaryna Dziarabina ◽  
Uliana Pinaeva ◽  
Sławomir Kadłubowski ◽  
Piotr Ulański ◽  
Xavier Coqueret

Abstract This article reports on the radiolytic synthesis of nanocomposites containing gold nanoparticles (AuNPs) within two types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA): (i) plain networks with various contents in ethylene glycol dimethacrylate (EGDMA), as a cross-linker and (ii) stimuli-responsive (SR) networks prepared from these monomers copolymerized with [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MADQUAT) to confer pH-switchable swelling. Hydrogels were prepared by photopolymerization with well-defined composition and a high degree of monomer conversion using two experimental procedures, as xerogels or in aqueous solution. Besides MADQUAT, acrylic acid (AA) or N-isopropylacrylamide have been tested as copolymers, yielding pHor temperature-sensitive hydrogels, respectively. Isothermal swelling in water was affected by monomer composition. Electron beam (EB) irradiation at doses up to 100 kGy of poly(HEMA) xerogels and water-swollen networks prepared with 0.5 wt% of EGDMA had a moderate impact on swelling characteristics and thermomechanical properties of the plain materials, whereas small amounts of extractables were formed. Poly(HEMA)-based nanocomposites containing AuNPs were successfully obtained by EB irradiation of samples swollen by aqueous solutions of Au(III). The effects of dose and cross-linking density on the formation of AuNPs were monitored by UV-visible spectroscopy. Irradiation at well-defined temperatures of the Au(III)-loaded SR hydrogels induced the formation of nanoparticles with size-dependent features, whereas the efficiency of Au(III) reduction at 10 kGy was not significantly affected by the network structure. EB-induced reduction of Au(III) in poly(HEMA) hydrogels using a lead mask to generate well-defined patterns yielded coloured and long-lasting images in the zones where the nanocomposite was formed.

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1352
Author(s):  
Ikenna H. Ezenwajiaku ◽  
Emmanuel Samuel ◽  
Robin A. Hutchinson

The radical homopolymerization kinetics of 3-(methacryloylaminopropyl) trimethylammonium chloride (MAPTAC) and its batch copolymerization with nonionized acrylic acid (AA) in aqueous solution are investigated and modeled. The drift in monomer composition is measured during copolymerization by in situ NMR over a range of initial AA molar fractions and monomer weight fractions up to 0.35 at 50 °C. The copolymer becomes enriched in MAPTAC for monomer mixtures containing up to 60 mol% MAPTAC, but is enriched in AA for MAPTAC-rich mixtures; this azeotropic behavior is dependent on initial monomer content, as electrostatic interactions from the cationic charges influence the system reactivity ratios. Models for MAPTAC homopolymerization and AA-MAPTAC copolymerization are developed to represent the rates of monomer conversion and comonomer composition drifts over the complete range of experimental conditions.


Langmuir ◽  
2016 ◽  
Vol 32 (17) ◽  
pp. 4297-4304 ◽  
Author(s):  
Xiaoqin Niu ◽  
Fen Ran ◽  
Limei Chen ◽  
Gabriella Jia-En Lu ◽  
Peiguang Hu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4066
Author(s):  
David Herrera Robalino ◽  
María del Mar Durán del Amor ◽  
Carmen María Almagro Gómez ◽  
José Ginés Hernández Cifre

The adsorption of the thermoresponsive positively charged copolymer poly(N-isopropylacrylamide)-block-poly(3-acrylamidopropyl)trimethylammonium chloride, PNIPAAM48-b-PAMPTMA6(+), onto negatively charged gold nanoparticles can provide stability to the nanoparticles and make the emerging structure tunable by temperature. In this work, we characterize the nanocomposite formed by gold nanoparticles and copolymer chains and study the influence of the copolymer on the expected aggregation process that undergoes those nanoparticles at high ionic strength. We also determine the lower critical solution temperature (LCST) of the copolymer (around 42 °C) and evaluate the influence of the temperature on the nanocomposite. For those purposes, we use dynamic light scattering, UV-vis spectroscopy and transmission electron microscopy. At the working PNIPAAM48-b-PAMPTMA6(+) concentration, we observe the existence of copolymer structures that trap the gold nanoparticles and avoid the formation of nanoparticles aggregates. Finally, we discuss how these structures can be useful in catalysis and nanoparticles recovery.


2019 ◽  
Author(s):  
Sara Ghiassian ◽  
Lihai Yu ◽  
Pierangelo Gobbo ◽  
Ali nazemi ◽  
Tommaso Romagnoli ◽  
...  

A bioorthogonal gold nanoparticle template displaying interfacial nitrone functional groups for bioorthogonal interfacial strain-promoted alkyne-nitrone cycloaddition (I-SPANC) reactions has been synthesized. The Nitrone-AuNPs were characterized in detail using <sup>1</sup>H NMR spectroscopy, TEM, TGA, and XPS and a nanoparticle raw formula was calculated. The ability to control the conjugation of molecules of interest at the molecular level onto the Nitrone-AuNPs template allowed us to create a methodology for the synthesis of AuNP-based radiolabeled probes with a high degree of loading using copper free, strained-promoted cycloaddition. To this end, we also describe the synthesis of a new prosthetic group containing a strained-alkyne capable of clicking hot <sup>18</sup>F-label onto complementary azide or nitrone labelled agents.


2014 ◽  
Vol 2 (36) ◽  
pp. 6044-6053 ◽  
Author(s):  
Yingying Ma ◽  
Jiangshan Wan ◽  
Kun Qian ◽  
Shinan Geng ◽  
Nijun He ◽  
...  

High colloid stability of highly concentrated Au nanoparticles (GNPs) for use in blood-pool imaging was achieved, using p(N-isopropylacrylamide-co-butyl methylacrylate) nanogels.


Soft Matter ◽  
2015 ◽  
Vol 11 (24) ◽  
pp. 4830-4839 ◽  
Author(s):  
Lichun Song ◽  
Hui Sun ◽  
Xiaolu Chen ◽  
Xia Han ◽  
Honglai Liu

This work reports on the aqueous stimuli-responsive behaviors of an ABA triblock copolymer, a BAB triblock copolymer, an AB diblock copolymer and citrate-based gold nanoparticles decorated with AB diblock copolymers.


2020 ◽  
Vol 117 (11) ◽  
pp. 5617-5623 ◽  
Author(s):  
Xiang Zhou ◽  
Dongbao Yao ◽  
Wenqiang Hua ◽  
Ningdong Huang ◽  
Xiaowei Chen ◽  
...  

As a strategy for regulating entropy, thermal annealing is a commonly adopted approach for controlling dynamic pathways in colloid assembly. By coupling DNA strand-displacement circuits with DNA-functionalized colloid assembly, we developed an enthalpy-mediated strategy for achieving the same goal while working at a constant temperature. Using this tractable approach allows colloidal bonding to be programmed for synchronization with colloid assembly, thereby realizing the optimal programmability of DNA-functionalized colloids. We applied this strategy to conditionally activate colloid assembly and dynamically switch colloid identities by reconfiguring DNA molecular architectures, thereby achieving orderly structural transformations; leveraging the advantage of room-temperature assembly, we used this method to prepare a lattice of temperature-sensitive proteins and gold nanoparticles. This approach bridges two subfields: dynamic DNA nanotechnology and DNA-functionalized colloid programming.


2016 ◽  
Vol 128 (34) ◽  
pp. 10106-10109 ◽  
Author(s):  
Huaguang Wang ◽  
Binghui Li ◽  
Arjun G. Yodh ◽  
Zexin Zhang

Sign in / Sign up

Export Citation Format

Share Document