scholarly journals Nitrone Modified Gold Nanoparticles: Synthesis, Characterization and Their Potential as 18F-Labeled PET Probes via I-SPANC

Author(s):  
Sara Ghiassian ◽  
Lihai Yu ◽  
Pierangelo Gobbo ◽  
Ali nazemi ◽  
Tommaso Romagnoli ◽  
...  

A bioorthogonal gold nanoparticle template displaying interfacial nitrone functional groups for bioorthogonal interfacial strain-promoted alkyne-nitrone cycloaddition (I-SPANC) reactions has been synthesized. The Nitrone-AuNPs were characterized in detail using <sup>1</sup>H NMR spectroscopy, TEM, TGA, and XPS and a nanoparticle raw formula was calculated. The ability to control the conjugation of molecules of interest at the molecular level onto the Nitrone-AuNPs template allowed us to create a methodology for the synthesis of AuNP-based radiolabeled probes with a high degree of loading using copper free, strained-promoted cycloaddition. To this end, we also describe the synthesis of a new prosthetic group containing a strained-alkyne capable of clicking hot <sup>18</sup>F-label onto complementary azide or nitrone labelled agents.

2019 ◽  
Author(s):  
Sara Ghiassian ◽  
Lihai Yu ◽  
Pierangelo Gobbo ◽  
Ali nazemi ◽  
Tommaso Romagnoli ◽  
...  

A bioorthogonal gold nanoparticle template displaying interfacial nitrone functional groups for bioorthogonal interfacial strain-promoted alkyne-nitrone cycloaddition (I-SPANC) reactions has been synthesized. The Nitrone-AuNPs were characterized in detail using <sup>1</sup>H NMR spectroscopy, TEM, TGA, and XPS and a nanoparticle raw formula was calculated. The ability to control the conjugation of molecules of interest at the molecular level onto the Nitrone-AuNPs template allowed us to create a methodology for the synthesis of AuNP-based radiolabeled probes with a high degree of loading using copper free, strained-promoted cycloaddition. To this end, we also describe the synthesis of a new prosthetic group containing a strained-alkyne capable of clicking hot <sup>18</sup>F-label onto complementary azide or nitrone labelled agents.


2013 ◽  
Vol 1547 ◽  
pp. 149-154
Author(s):  
E.S. Kooij ◽  
M.A. Raza ◽  
H.J.W. Zandvliet

ABSTRACTWe present a simple, novel procedure to selectively deposit gold nanoparticles using pure water. It enables patterning of nanoparticle monolayers with a remarkably high degree of selectivity on flat as well as microstructured oxide surfaces. We demonstrate that water molecules form a thin ‘capping’ layer on exposed thiol molecules within the mercaptan self-assembled layer. This reversible capping of water molecules locally ‘deactivates’ the thiol groups, therewith inhibiting the binding of metallic gold nanoparticles to these specific areas. In addition, we show that this amazing role of water molecules can be used to selectively metalize the patterned gold nanoparticle arrays. Employing an electroless seeded growth process, the isolated seeds are enlarged past the percolation threshold to deposit conducting metal layers.


2017 ◽  
Vol 13 ◽  
pp. 1008-1021 ◽  
Author(s):  
Federica Compostella ◽  
Olimpia Pitirollo ◽  
Alessandro Silvestri ◽  
Laura Polito

Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.


2018 ◽  
Vol 6 (34) ◽  
pp. 5460-5465 ◽  
Author(s):  
Hongje Jang ◽  
Kyungtae Kang ◽  
Mostafa A. El-Sayed

Fucoidan-coated gold nanoparticle mediated autophagy triggering and PERS monitoring provide molecular level insight on a biological event.


2018 ◽  
Vol 25 (12) ◽  
pp. 1433-1445 ◽  
Author(s):  
Stanley Anniebell ◽  
Subash C.B. Gopinath

Background: Research interest on the properties of polymer conjugated gold nanoparticle (GNP) in biomedicine is rapidly rising because of the extensive evidences for their unique properties. In the field of biomedicine, GNPs have been widely used because of their inertness and low levels of cytotoxicity. Therefore, when exposed to cells, they are less prone to exert damaging effects. GNPs are capable of being functionalized as desired and are ideal as they do not encourage undesired side reactions that might counter react with the intention of the functionalization. Biofouling is an occurrence that takes place at cellular and biological molecular level, binds non-specifically on the detection surface and forms a wrong output. This undesired incidence can be avoided by conjugating the surface of biomolecules with polymers. Densely packed repeating chains of polymers such as polyethylene glycol are capable of decreasing non-specific reactions. Applications of polymer conjugated GNPs in the field of biomedicine are as biosensors, delivery and therapeutic agents. Conclusion: Therefore, the properties and applications of polymer conjugated GNPs are studied widely as overviewed here.


2020 ◽  
Vol 16 (2) ◽  
pp. 204-213 ◽  
Author(s):  
Melissa A. Vetten ◽  
Mary Gulumian

Background: Endotoxin-free engineered nanoparticle suspensions are imperative for their successful applications in the field of nanomedicine as well as in the investigations in their toxicity. Gold nanoparticles are known to interfere with various in vitro assays due to their optical properties and potential for surface reactivity. In vitro endotoxin testing assays are known to be susceptible to interference caused by the sample being tested. Objective: This study aimed to identify a preferred assay for the testing of endotoxin contamination in gold nanoparticle suspensions. Methods: The interference by gold nanoparticles on three assays namely, the commonly used limulus amebocyte lysate chromogenic assay, the limulus amebocyte lysate gel-clot method, and the less common recombinant Factor C (rFC) assay, was tested. Results: Possible interference could be observed with all three assays. The interference with the absorbance- based chromogenic assay could not be overcome by dilution; whilst the qualitative nature of the gel-clot assay excluded the possibility of distinguishing between a false positive result due to enhancement of the sensitivity of the assay, and genuine endotoxin contamination. However, interference with the rFC assay was easily overcome through dilution. Conclusion: The rFC assay is recommended as an option for endotoxin contamination detection in gold nanoparticle suspensions.


1985 ◽  
Vol 50 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Milena Masojídková ◽  
Jaroslav Zajíček ◽  
Miloš Buděšínský ◽  
Ivan Rosenberg ◽  
Antonín Holý

Conformational properties of ribonucleoside 5'-O-phosphonylmethyl derivatives have been determined by 1H NMR spectroscopy and compared with those of natural nucleosides and 5'-nucleotides.


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1576-1586 ◽  
Author(s):  
Sara Pfister ◽  
Luca Sauser ◽  
Ilche Gjuroski ◽  
Julien Furrer ◽  
Martina Vermathen

The encapsulation of five derivatives of chlorin e6 with different hydrophobicity and aggregation properties into a series of five poloxamer-type triblock copolymer micelles (BCMs) with varying numbers of polyethylene and polypropylene glycol (PEG, PPG) units was monitored using 1H NMR spectroscopy. NMR chemical shift and line shape analysis, as well as dynamic methods including diffusion ordered spectroscopy (DOSY) and T1 and T2 relaxation time measurements of the chlorin and the polymer resonances, proved useful to assess the chlorin–BCM compatibility. The poloxamers had high capability to break up aggregates formed by chlorins up to intermediate hydrophobicity. Physically entrapped chlorins were always localized in the BCM core region. The loading capacity correlated with chlorin polarity for all poloxamers among which those with the lowest number of PPG units were most efficient. DOSY data revealed that relatively weakly aggregating chlorins partition between the aqueous bulk and micellar environment whereas more hydrophobic chlorins are well retained in the BCM core region, rendering these systems more stable. T1 and T2 relaxation time measurements indicated that motional freedom in the BCM core region contributes to encapsulation efficiency. The BCM corona dynamics were rather insensitive towards chlorin entrapment except for the poloxamers with short PEG chains. The presented data demonstrate that 1H NMR spectroscopy is a powerful complementary tool for probing the compatibility of porphyrinic compounds with polymeric carriers such as poloxamer BCMs, which is a prerequisite in the development of stable and highly efficient drug delivery systems suitable for medical applications like photodynamic therapy of tumors.


2020 ◽  
Vol 22 (19) ◽  
pp. 11075-11085
Author(s):  
Mengjian Wu ◽  
Zhaoxia Wu ◽  
Shangwu Ding ◽  
Zhong Chen ◽  
Xiaohong Cui

Different submicellar solubilization mechanisms of two systems, Triton X-100/tetradecane and sodium dodecyl sulfate (SDS)/butyl methacrylate, are revealed on the molecular scale by 1H NMR spectroscopy and 2D diffusion ordered spectroscopy (DOSY).


2021 ◽  
Author(s):  
Yiren Cao ◽  
Jinjun Wu ◽  
Bo Pang ◽  
Hongquan Zhang ◽  
X. Chris Le

The trans-cleavage activity of the target-activated CRISPR-Cas12a liberated an RNA crosslinker from a molecular transducer, which facilitated assembly of gold nanoparticles. Integration of the molecular transducer with isothermal amplification and...


Sign in / Sign up

Export Citation Format

Share Document