scholarly journals Enhanced Reliability for Winding Machine via New Fault Tolerant Control Based on RST-Backstepping Controller

2021 ◽  
Vol 6 (1) ◽  
pp. 229-241
Author(s):  
Fouad Haouari ◽  
Salaheddine Messekher ◽  
Noureddine Bali ◽  
Mohamed Tadjine ◽  
Mohamed Seghir Boucherit

Abstract Due to the external disturbances, model uncertainties, strong coupling, and occurred faults, the winding machine presents a great control challenge. In order to deal with these problems, this paper presents the formulation of a novel scheme of fault tolerant control (FTC) for three-motor web-winding systems; it is concerned with the nonlinear robust backstepping control based on the combination of RST and backstepping controllers where the process is modelled by a nonlinear model. The main contribution of the paper is that the approach developed here summarises the performance of RST and backstepping controllers in order to design a robust controller capable of eliminating external disturbances and sensor faults affecting the system. The stability of the whole system is proven using the Lyapunov theory. Finally, analysis in comparison with the conventional backstepping controller and simulations in the MATLAB environment are accomplished to confirm the efficiency of the proposed method.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ban Wang ◽  
Peng Huang ◽  
Wei Zhang

This paper presents an active fault-tolerant control strategy for quadrotor helicopters to simultaneously accommodate sensor faults and external disturbances. Unlike most of the existing fault diagnosis and fault-tolerant control schemes for quadrotor helicopters, the proposed fault diagnosis scheme is able to estimate sensor faults while eliminating the effect of external disturbances. Moreover, the proposed fault-tolerant control scheme is capable to eliminate the adverse effect of external disturbances as well by designing a disturbance observer to effectively estimate the unknown external disturbances and integrating with the designed integral sliding-mode controller. In this case, the continuous operation of the quadrotor helicopter is ensured while avoiding the unexpected control chattering. In addition, the stability of the closed-loop system is theoretically proved. Finally, the effectiveness and advantages of the proposed scheme are validated and demonstrated through comparative numerical simulations of the quadrotor helicopter under different faulty and uncertain scenarios.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Davood Allahverdy ◽  
Ahmad Fakharian ◽  
Mohammad Bagher Menhaj

In this paper, a fault-tolerant control system based on back-stepping integral sliding mode controller (BISMC) is designed and analyzed for both nonlinear translational and rotational subsystems of the quadrotor unmanned aerial vehicles (UAVs). The novelty of this paper is about combination of a classic controller with a repetitive algorithm to reduce the response time to actuator faults and have better tracking performance. The actuator fault is defined based on the loss of effectiveness and bias fault. Next, the iterative learning control algorithm (ILCA) is used to compensate for the unknown fault input according to previous recorded experiences. In the normal condition (without actuators fault), BISMC can force the actual trajectories toward the desired commands and reduce chattering about control signals, and in the presence of the actuators fault or external disturbances, the mentioned learning algorithm can incline the accuracy of the tracking performance and compensate for the occurred error. The Lyapunov theory illustrates that the proposed control strategy can stabilize the system despite the actuators’ fault and external disturbances. The simulation results show the effectiveness of the proposed scheme in comparison with another method.


Author(s):  
Mingzhou Gao

This article proposes a novel adaptive fault-tolerant control method for suppressing flutter and compensating for related failure in a flutter system. Considering cubic nonlinearity, external disturbances, and related failure, the flutter dynamic model was established firstly. Then, an adaptive fault-tolerant control law was proposed on basis of this model to compensate for related failure and suppress flutter. By Lyapunov stability analysis, the stability of proposed control law was proved in detail. On the last, simulation results further proved the effectiveness of the control law which can not only suppress flutter and compensate for related failure successfully but also has good robustness for external disturbances and system perturbation.


Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 89 ◽  
Author(s):  
Tan Van Nguyen ◽  
Cheolkeun Ha

With the rapid development of computer science and information and communication technology (ICT), increasingly intelligent, and complex systems have been applied to industries as well as human life. Fault-tolerant control (FTC) has, therefore, become one of the most important topics attracting attention from both engineers and researchers to maintain system performances when faults occur. The ultimate goal of this study was to develop a sensor fault-tolerant control (SFTC) to enhance the robust position tracking control of a class of electro-hydraulic actuators called mini motion packages (MMPs), which are widely used for applications requiring large force-displacement ratios. First, a mathematical model of the MMP system is presented, which is then applied in the position control process of the MMP system. Here, a well-known proportional, integrated and derivative (PID) control algorithm is employed to ensure the positional response to the reference position. Second, an unknown input observer (UIO) is designed to estimate the state vector and sensor faults using a linear matrix inequality (LMI) optimization algorithm. Then an SFTC is used to deal with sensor faults of the MMP system. The SFTC is formed of the fault detection and the fault compensation with the goal of determining the location, time of occurrence, and magnitude of the faults in the fault signal compensation process. Finally, numerical simulations were run to demonstrate the superior performance of the proposed approach compared to traditional tracking control.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhifang Wang ◽  
Jianguo Yu ◽  
Shangjing Lin ◽  
Junguo Dong ◽  
Zheng Yu

Purpose The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system to distribute to solve the problem of control and communication failure at the same time. Design/methodology/approach In the paper, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network-integrated system. Findings The results show that the integrated system has good robustness and fault tolerance performance indicators for flight control and wireless signal transmission when confronted with external disturbances, internal actuator failures and wireless network associated failures and the flight control curve of the quadrotor unmanned aerial vehicle (UAV) is generally smooth and stable, even if it encounters external disturbances and actuator failures, its fault tolerance performance is very good. Then in the range of 400–800 m wireless communication distance, the success rate of wireless signal loop transmission is stable at 80%–100% and the performance is at least relatively improved by 158.823%. Originality/value This paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, based on the robust fault-tolerant control algorithm, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system and through the Riccati equation and linear matrix inequation method, the designed distributed robust H∞ adaptive fault-tolerant controller further optimizes the fault suppression factor γ, so as to break through the limitation of only one Lyapunov matrix for different fault modes to distribute to solve the problem of control and communication failure at the same time.


Sign in / Sign up

Export Citation Format

Share Document