scholarly journals Study of Vertical Movements of the European Crust Using Tide Gauge and Gnss Observations

2015 ◽  
Vol 97 (1) ◽  
pp. 112-131 ◽  
Author(s):  
Kornyliy Tretyak ◽  
Solomiya Dosyn

AbstractThis research is devoted to the study of vertical movements of the European crust on the basis of two independent methods, namely tide gauge and GNSS observations results. The description and classification of factors affecting sea level change has been made. The precision with which the movement of the earth's crust according to the results of tide gauge observations can be explored has been calculated . A methodology to identify the duration of tide gauge observations required for studies of vertical movements of the earth 's crust has been presented. Approximation of tide gauge time series with the help of Fourier series has been implemented, the need for long-term observations in certain areas has been explained. The diagram of the velocities of the vertical movements of the European crust on the basis of the tide gauge data and GNSS observations has been built and the anomalous areas where the observations do not coincide have been identified.

2018 ◽  
Author(s):  
J. A. Mattias Green ◽  
David G. Bowers ◽  
Hannah A. M. Byrne

Abstract. Double high or low tides are usually explained by adding a higher harmonic to the dominating tide. In its simplest form, the criterion for a double tide is that the amplitude ratio between the higher harmonic and the dominating constituent is larger than 1/n2 where n is the ratio of their periods. However, it is not always clear how the higher harmonic becomes large enough to generate the double tide. This is rectified here by identifying three possible ways to enhance the higher harmonic enough to produce a double tide. Using TPXO9, the latest version of the altimetry constrained global tide database, potential locations for all three classes are identified and the existence of double tides are then evaluated using historic long-term tide gauge data from nearby locations. Thirteen locations with double tides were identified this way across the classes, of which seven are discussed further and shown to fit the classification scheme. The search criterion for classes 1 and 2, based on the amplitudes of M2, S2, and M4, work well with TPXO9 and suggests over 400 locations with double tides. The main reason we cannot identify more double tide locations is a lack of TG data, especially in the polar areas. Class 3, which requires an embayment resonant for the higher harmonic initially provided over 8000 potential locations, but only a few of these were in embayments. This class thus requires more manual work to identify the locations. It is concluded that the mechanism behind double tides in most textbooks needs to be revised because they are far more frequent in both space and time than previously thought.


2011 ◽  
Vol 76 (3-4) ◽  
pp. 137-151 ◽  
Author(s):  
Itthi Trisirisatayawong ◽  
Marc Naeije ◽  
Wim Simons ◽  
Luciana Fenoglio-Marc

2009 ◽  
Vol 48 (2) ◽  
pp. 195-209
Author(s):  
M. T. Ramírez Herrera ◽  
A. B. Cundy ◽  
V. Kostoglodov ◽  
M. Ortíz

Sedimentological, stratigraphic and geochemical data record abrupt land elevation change, coastal subsid- ence, and changes in the salinity of Mitla lagoon that may be associated with a tsunami around 3400-3500 yr BP. The observations are supported by microfossil data (pollen, diatoms and phytolith) from other studies on the Guerrero coast. Stratigraphic data indicate an average Late Holocene sedimentation rate of about 1 mm/yr. Short-term sea-level records from 1952 of tide gauge data are compared with expected coseismic coastal deformation, and long-term records of coastal deformation from the sediment record c. 3500 yr BP. Recent large earthquakes in the Central Mexico subduction zone ruptured an area of limited width of about ~60 km, but some prehistoric earthquakes may have ruptured the entire coupled plate interface almost up to the trench, thus generating signifi- cant coastal subsidence and possibly a large tsunami.


2017 ◽  
Vol 34 (2) ◽  
pp. 295-307 ◽  
Author(s):  
Kristine M. Larson ◽  
Richard D. Ray ◽  
Simon D. P. Williams

AbstractA standard geodetic GPS receiver and a conventional Aquatrak tide gauge, collocated at Friday Harbor, Washington, are used to assess the quality of 10 years of water levels estimated from GPS sea surface reflections. The GPS results are improved by accounting for (tidal) motion of the reflecting sea surface and for signal propagation delay by the troposphere. The RMS error of individual GPS water level estimates is about 12 cm. Lower water levels are measured slightly more accurately than higher water levels. Forming daily mean sea levels reduces the RMS difference with the tide gauge data to approximately 2 cm. For monthly means, the RMS difference is 1.3 cm. The GPS elevations, of course, can be automatically placed into a well-defined terrestrial reference frame. Ocean tide coefficients, determined from both the GPS and tide gauge data, are in good agreement, with absolute differences below 1 cm for all constituents save K1 and S1. The latter constituent is especially anomalous, probably owing to daily temperature-induced errors in the Aquatrak tide gauge.


Sign in / Sign up

Export Citation Format

Share Document